
Numerically Stable Hidden Markov Model

Implementation

Tobias P. Mann

February 21, 2006

Abstract

Application of Hidden Markov Models to long observation sequences entails the
computation of extremely small probabilities. These probabilities introduce numerical
instability in the computations used to determine the probability of an observed se-
quence given a model, the most likely sequence of states, and the maximum likelihood
model updates given an observation sequence. This paper explains how to handle small
probabilities by working with the logarithms of probabilities, rather than resorting to
alternative rescaling procedures.

1 Introduction

A practical issue in the use of Hidden Markov Models (HMMs) to model long sequences is
the numerical scaling of conditional probabilities. Conditional probabilities must be com-
puted in order to efficiently estimate the most probable sequence of states for a model given
some data. Conditional probabilities are also computed in the process of estimating HMM
parameters given training data. The numerical issue arising from the computation of condi-
tional probabilities is that the probability of observing a long sequence given most models is
extremely small. The use of these extremely small numbers in computations leads to numer-
ical instability, and makes application of HMMs to genome length sequences challenging.
There are two common approaches to dealing with small conditional probabilities. One
approach is to rescale the conditional probabilities using carefully designed scaling factors.
The other approach is to work with the logarithms of the conditional probabilities. This
paper explains how to implement the second approach, and argues that computing with
logarithms has advantages over the scaling factor approach.

A common approach to eliminating numerical problems is to rescale the conditional prob-
abilities by computing scaling factors. These scaling factors are designed to bring various
conditional probabilities to within a range easily handled by standard machine floating point
representation. In an excellent tutorial on HMMs, Rabiner [1] notes the potential numerical
problems and outlines how to compute scaling factors, but the applicaton of these scaling
factors is incompletely specified. A slightly different scaling factor derivation is provided in
another nice tutorial by Minka [2], but Minka doesn’t provide details on computing Baum
Welch updates to estimate HMM parameters. Rescaling approaches offer a solution to the
numerical instability of computing with very small conditional probabilities, but they also
make the resulting code more complicated to understand and debug.

An alternative to the rescaling approach is to compute the logarithms of the conditional
probabilities 1. Working with logarithms has the advantage that scaling constants can be
eliminated and Baum Welch parameter updates do not need to be re-derived; in addition,

1This is suggested on page 78 of Durbin et al [3]
1



numerical checks are easier to design using an intuitive understanding of the conditional
probabilities than artificial scaled versions of the probabilities of interest. Rabiner provides
a guide to a logarithmic implementation of the Viterbi algorithm in his tutorial, but does
not explain how to implement the forward and backward algorithms, or the Baum-Welch
parameter estimation algorithms using logarithms. Durbin et al allude to the technique
necessary to work with logarithms, but the technique is again incompletely explained.

This paper proceeds by first defining functions necessary to compute hmm probabiliites
using logarithms, and then provides pseudo-code to compute the main equations in Rabiner
[1] using the logarithm technique suggested in Durbin et al. I conclude by arguing that
the logarithm approach is both more convenient and easier to test than the scaling factor
approach, although the logarithm approach is less efficient than the scaling approach.

2 Functions necessary for computation of probability
logarithms

In order to implement the basic algorithms in Rabiner’s tutorial using logarithms, we will
need four functions and a value to represent the logarithm of zero. The four functions
are essentially standard logarithm operations extended to correctly handle zero values; zero
values must be handled because events can have zero probability. These functions will
be used to compute the sums and products in Rabiner’s tutorial while avoiding problems
incured by small probabilities.

The logarithm of zero is not a number; the value representing the logarithm of zero in
the implementation proposed here is best represented as the “Not a Number” value provided
by most implementations of floating point arithmetic. I will write LOGZERO to refer to
this value.

The four functions we will use are an extended exponential function, extended logarithm
function, a function for computing the logarithm of a sum given the logarithms of the
summands, and a function for computing the logarithm of a product given the logarithms
of the factors. I will use the prefix ’e’ to distinguish the extended functions below from the
standard functions.

• eexp(x) The extended exponential function is the standard exponential function e(x),
except that it is extended to handle log zero, and is defined as follows.

1. for a real number x:
eexp(x) = e(x) (1)

2. for x = LOGZERO
eexp(x) = 0 (2)

• eln(x) The extended logarithm is the standard logarithm provided by most floating
point math libraries, except that it is extended to handle inputs of zero, and is defined
as follows.

1. for positive real numbers x:
eln(x) = ln(x) (3)

2. for x = 0
eln(x) = LOGZERO (4)

• elnsum(eln(x),eln(y)) The extended logarithm sum function computes the extended
logarithm of the sum of x and y given as inputs the extended logarithm of x and y,
and is defined as follows.



1. for positive real x and y:

elnsum(eln(x), eln(y)) = eln(x + y) (5)

2. for x = 0
elnsum(LOGZERO, eln(y)) = eln(y) (6)

3. for y = 0
elnsum(eln(x), LOGZERO) = eln(x) (7)

• elnproduct(eln(x),eln(y)) The extended logarithm product function returns the
logarithm of the product of x and y.

1. for positive real x and y:

elnproduct(eln(x), eln(y)) = eln(x) + eln(y) (8)

2. for x = 0
elnproduct(LOGZERO, eln(y)) = LOGZERO (9)

3. for y = 0
elnproduct(eln(x), LOGZERO) = LOGZERO (10)

Using these three functions, the various sums and products that must be computed for
HMM use can be implemented simply, as shown by the pseudocode in the next section.

3 Pseudocode for log space computations

I begin with pseudo-code for the extended logarithm functions defined above, and then I
move on to provide pseudo-code for the important operations in the Rabiner tutorial, where
I use his nomenclature and provide pseudocode to solve Rabiner’s problems one through
three.

3.1 Extended logarithm functions

The floating point value “Not a Number” (or NaN) is a natural choice for implementing
the value of LOGZERO. However, in many standard floating point implementations, any
comparison involving NaN will return false. Most floating point implementations provide
special functions for identifying not-a-number values (such as “isnan” in C) that must be
used instead of the usual equality test.

The four functions below are extended exponential, extended logarithm, extended loga-
rithm sum, and extended logarithm product.

Algorithm 1 Compute eexp(x)
if x = LOGZERO then

0
else

exp(x)
end if



Algorithm 2 Compute eln(x)
if x = 0 then

LOGZERO
else if x > 0 then

ln(x)
else

negative input error
end if

Algorithm 3 Compute elnsum(eln(x),eln(y))
if eln(x)=LOGZERO OR eln(y)=LOGZERO then

if eln(x)=LOGZERO then
eln(y)

else
eln(x)

end if
else

if eln(x) > eln(y) then
eln(x) + eln(1+exp(eln(y)-eln(x)))

else
eln(y) + eln(1+exp(eln(x)-eln(y)))

end if
end if

The formula for computing elnsum can be derived as follows.

ln(x) + (ln(1 + eln(y)−ln(x))) = ln(x) + ln
(
1 + eln(y/x)

)
= ln(x) + ln

(
1 +

y

x

)
= ln(x) + ln

(x + y

x

)
= ln(x) + ln(x + y)− ln(x)
= ln(x + y)

(11)

It is important to check the size of the logarithms of the summands, because the nu-
merical stability of this computation depends on small values of the exponential term in
ln(1 + eln(y)−ln(x)). Small values can be ensured by always subtracting the larger argu-
ment from the smaller argument so that the sign of the difference of logarithms is negative.
For example, consider the case where the summands are e60 and e−10. The logarithms of
the summands are 60 and -10, and the logarithm of the sum can be computed either as
ln(e60) + ln(1 + e−70), or as ln(e−10) + ln(1 + e70). In the first alternative, the quantity
e−70 gets underflowed to zero, and the result is 60, which is as accurate as most machine
precisions will allow. In the second alternative, e70 will evaluate to inf , the floating point
constant used to represent a number to large to be represented in the machine precision,
and the numerical value of the computation will be lost. When computing the logarithm
of the sum of two numbers that have substantially different magnitudes, the exact form of
the computation employed can make the difference between a usable result and an overflow
error.



Algorithm 4 Compute elnproduct(eln(x),eln(y))
if eln(x)=LOGZERO OR eln(y)=LOGZERO then

LOGZERO
else

eln(x)+eln(y)
end if

3.2 Problem 1: Computing the Probability of Observing a Se-
quence

I am assuming familiarity with the Rabiner tutorial and will use his notation and definitions.
In the forward algorithm, the object is to compute the joint probability that the partial

sequence from time 1 to t was observed and that the state of the Markov process was Sj at
time t, given a model λ; this is writte αt(j) and is defined (Rabiner’s equations 18-20) as

αt(j) = P (O1O2 · · ·Ot, qt = Sj |λ)
= πjbj(O1) for t = 1

= bj(Ot)
N∑

i=1

αt−1(i)aij for t > 1

(12)

In the log space forward algorithm, the object is simply to compute ln(αt(i)), which will
be written elnαt(i).

Algorithm 5 Compute elnαt(i) for all states Si and observations Ot

for i = 1 to N do
elnα1(i)← elnproduct(eln(πi), eln(bi(O1)))

end for
for t = 2 to T do

for j = 1 to N do
logalpha← LOGZERO
for i = 1 to N do

logalpha← elnsum(logalpha, elnproduct(elnαt−1(i), eln(aij)))
end for
elnαt(j)← elnproduct(logalpha, eln(bj(Ot)))

end for
end for

In the backward algorithm, the object is to compute the joint probability of observing
the partial sequence from observation t + 1 to T given the model λ and that the hidden
state is Si at time t; this is written βt(i) and is defined (Rabiner’s equations 23-25) as

βt(i) = P (Ot+1Ot+2 · · ·OT |qt = Si, λ)
= 1 for t = T

=
N∑

j=1

aijbj(Ot+1)βt+1(j) for 1 ≤ t < T

(13)

In the log space backward algorithm, the object is to compute ln(βt(i)), which will be
written elnβt(i).



Algorithm 6 Compute elnβt(i) for all states Si and observations Ot

for i = 1 to N do
elnβT (i)← 0

end for
for t = T − 1 to 1 do

for i = 1 to N do
logbeta← LOGZERO
for j = 1 to N do

logbeta← elnsum(logbeta, elnproduct(eln(aij),
elnproduct(bj(Ot+1), elnβt+1(j))))

end for
elnβt(i)← logbeta

end for
end for

3.3 Problem 2: Computation of state probabilities given a model
and a sequence

Rabiner already provides the log space method for the viterbi algorithm (his equations
104-105c). Therefore, I will only provide pseudocode for computing γt(i), which is the
probability of being in state Si at time t given the model and observation sequence, and is
defined (Rabiner’s equation 27, but with the denominator summation variable changed) as:

γt(i) =
αt(i)βt(i)∑N

j=1 αt(j)βt(j)
(14)

This section shows how to compute the log of gamma, written elnγt(i), presuming the
log versions of the forward and backward computations are completed.

Algorithm 7 Compute elnγt(i) for all states Si and observations Ot

Require: The log space forward and backward variables have been computed
for t = 1 to T do

normalizer ← LOGZERO
for i = 1 to N do

elnγt(i)← elnproduct(elnαt(i), elnβt(i))
normalizer ← elnsum(normalizer, elnγt(i))

end for
for i = 1 to N do

elnγt(i)← elnproduct(elnγt(i),−normalizer)
end for

end for

3.4 Problem 3: Baum-Welch updates of model parameters

In order to compute revised model parameters, we need to compute the state probabilities of
problem 2, as well as a new probability ξt(i, j), which is defined as the probability of being
in state Si at time t and state Sj at time t + 1, given a model λ and observation sequence
O. Rabiner’s equations 36 and 37 (where the variables of summation in the denominator
have again been changed) are:



ξt(i, j) = P (qt = Si, qt+1 = Sj |O, λ)

=
αt(j)aijbj(Ot+1)βt+1(j)∑N

k=1

∑N
l=1 αt(k)aklbl(Ot+1)βt+1(l)

(15)

I will write elnξt(i, j) for the log space version of this probability.

Algorithm 8 Compute elnξt(i, j) for all state pairs Si and Sj and observations Ot

Require: The log space forward and backward variables have been computed
for t = 1 to T − 1 do

normalizer ← LOGZERO
for i = 1 to N do

for j = 1 to N do
elnξt(i, j)← elnproduct(elnαt(i), elnproduct(eln(aij),

elnproduct(eln(bj(Ot+1)), elnβt+1(j))))
normalizer ← elnsum(normalizer, elnξt(i, j))

end for
end for
for i = 1 to N do

for j = 1 to N do
elnξt(i, j)← elnproduct(elnξt(i, j),−normalizer)

end for
end for

end for

Once the elnγ and elnξ variables are computed, the updated parameters can be com-
puted.

The updated state probabilities are simply the extended exponentials of the values of
elnγ1(i) (Rabiner’s equation 40a).

Algorithm 9 Compute πi, the estimated probability of starting in state Si

Require: The log space variable elnγ has been computed
πi ← eexp(elnγ1(i))

The updated transition probabilities are computed using both the elnγt(i) and elnξt(i, j)
variables.

Algorithm 10 Compute aij , the estimated probability of transitioning from state Si to Sj

Require: The elnγ and elnξ variables have been computed
numerator ← LOGZERO
denominator ← LOGZERO
for t = 1 to T − 1 do

numerator ← elnsum(numerator, elnξt(i, j))
denominator ← elnsum(denominator, elnγt(i))

end for
aij ← eexp(elnproduct(numerator,−denominator))

Finally, the updated emission probabilities are computed using the elnγt(i) variables,
the elnξt(i, j) variables, and finally the observation sequence Ot.



Algorithm 11 Compute bj(k), the estimated probability of emitting symbol vk from state
Sj

Require: The elnγ and elnξ variables have been computed
numerator ← LOGZERO
denominator ← LOGZERO
for t = 1 to T do

if Ot = vk then
numerator ← elnsum(numerator, elnγt(j))

end if
denominator ← elnsum(denominator, elnγt(j))

end for
bj(k)← eexp(elnproduct(numerator,−denominator))

4 Conclusions

This paper has presented an alternative to Rabiner’s scaling approach for handling numerical
instability in HMM computations. The probability logarithm approach is simple, and has
the advantage that probabilities of probability measures can be used to check the code at
intermediate stages. For instance, the sum over all states Si of γt(i) should be one, and
thus the logarithm of the sum of all states of γt(i) should be zero. Similarly, the sum over
all state pairs Si and Sj of ξt(i, j) should be one. These properties can be checked with the
log sum function.

The approach presented here is similar in spirit to Rabiner’s method for using logarithms
to modify the Viterbi algorithm for numerical stability. The logarithm approach has two
advantages. First, no derivations to use the scaled variables need be done - Rabiner’s
formulas can be used almost directly. Second, it is easy to design checks into the code to
verify the accuracy of the computations.

Rabiner’s scaling method is more efficient, because the logarithm approach requires
computing a logarithm and an exponential for every addition. The logarithm and the
exponential function are both expensive to compute. The use of tables could speed up the
logarithm and exponential computations, although at a loss of accuracy. For application
of an HMM with a small number of states to a relatively small chromosome, however, the
logarithm approach is fast enough in practice.

5 References

[1] Rabiner L. R. A Tutorial on Hidden Markov Models and Selected Applications in Speech
Recognition. Proc. IEEE, Vol. 77, No. 2, 1989
[2] Minka T.P. From Hidden Markov Models to Linear Dynamical Systems.
http://citeseer.ist.psu.edu/minka99from.html, 1999.
[3] Durbin R., Eddy S., Krogh A., Mitchison G. Biological Sequence Analysis. Cambridge
University Press, 1998.


