

First discussion section agenda
● Introductions

● HW1 context/advice/questions

● C++/general programming tips

● Suggestions for future topics

Introductions

● Who am I? (not 24601)
– 4th year Genome Sciences graduate student, Borenstein lab

– Microbial communities
● Community design algorithms
● Taxonomic structure-gene content relationships

– Main languages: R, Python, C++, and recently some
Javascript

● Who are you?
– Department?

– Programming experience/language of choice?

3 1

5

A NA

NANA $

BANANA$

4 2

0

NA$$

Suffix trees

● Applications:
● Longest-repeated
substring

● String repetitions
● Compression
● Genetic sequence
analysis

● and more...

Udi Manber: Yahoo!, Amazon, Google, Youtube, currently at the NIH

Gene Myers: One of the creators of BLAST, currently at the Max
Planck Institute

Why suffix arrays?

Why suffix arrays?
● Comparison to suffix trees

– 5 times as space efficient as suffix trees

– Search times are similar

– Takes longer to construct (but technically can be
done with the same asymptotic time complexity)

Why suffix arrays?
● Comparison to suffix trees

– 5 times as space efficient as suffix trees

– Search times are similar

– Takes longer to construct (but technically can be
done with the same asymptotic time complexity)

● “A primary motivation for this paper was to be able to
efficiently answer on-line string queries for very long
genetic sequences (on the order of one million or more
symbols long). In practice, it is the space overhead of
the query data structure that limits the largest text that
may be handled.”

A cool example: Burrows-Wheeler transform

A cool example: Burrows-Wheeler transform

● Leads to repetitive sequences, which are easier to compress, and
is easily invertible

A cool example: Burrows-Wheeler transform

● Leads to repetitive sequences, which are easier to compress, and
is easily invertible

● Used in Bowtie (short read aligner developed by Cole Trapnell)

Homework 1 tips

● Plan out your algorithm with pseudocode

Homework 1 tips

● Plan out your algorithm with pseudocode
● Think about what comparisons you need (and

don't need) to make

Homework 1 tips

● Plan out your algorithm with pseudocode
● Think about what comparisons you need (and

don't need) to make
● Get comfortable with pointers

Homework 1 tips

● Plan out your algorithm with pseudocode
● Think about what comparisons you need (and

don't need) to make
● Get comfortable with pointers
● Think about how to store inputs

Homework 1 tips

● Plan out your algorithm with pseudocode
● Think about what comparisons you need (and

don't need) to make
● Get comfortable with pointers
● Think about how to store inputs
● Think about how to store results (and

intermediate results)

Homework 1 tips

● Plan out your algorithm with pseudocode
● Think about what comparisons you need (and

don't need) to make
● Get comfortable with pointers
● Think about how to store inputs
● Think about how to store results (and

intermediate results)
● Try to format your output to match the template

Creating a suffix array
● Step 3:

– Sort the suffix pointers lexicographically

Programming style tips

Programming style tips

● The more readable your code is
– The easier it will be for me to help

– The more useful it will be to you later (especially if you
TA this class)

Programming style tips

● The more readable your code is
– The easier it will be for me to help

– The more useful it will be to you later (especially if you
TA this class)

● Tips for readability
– Intuitive and meaningful variable/function names

Programming style tips

● The more readable your code is
– The easier it will be for me to help

– The more useful it will be to you later (especially if you
TA this class)

● Tips for readability
– Intuitive and meaningful variable/function names

– Comments
● Describe what the different parts of your program are doing

Programming style tips

● The more readable your code is
– The easier it will be for me to help

– The more useful it will be to you later (especially if you
TA this class)

● Tips for readability
– Intuitive and meaningful variable/function names

– Comments
● Describe what the different parts of your program are doing

– Especially if you're doing something complicated

Programming style tips

● The more readable your code is
– The easier it will be for me to help

– The more useful it will be to you later (especially if you
TA this class)

● Tips for readability
– Intuitive and meaningful variable/function names

– Comments
● Describe what the different parts of your program are doing

– Especially if you're doing something complicated

– Simplicity is better to begin with, optimize later if
necessary

Programming style tips

● The more readable your code is
– The easier it will be for me to help

– The more useful it will be to you later (especially if you
TA this class)

● Tips for readability
– Intuitive and meaningful variable/function names

– Comments
● Describe what the different parts of your program are doing

– Especially if you're doing something complicated

– Simplicity is better to begin with, optimize later if
necessary

● Match the output template (for grading purposes)

Programming tips: testing

● Create small, easily-verified test cases
– Try to cover any edge cases you can think of

● Print intermediate output
– Is the processed data as expected?

● Write incrementally, test as you go
– Assertion statements are helpful

Programming tips: efficiency

● Remove unnecessary operations from loops

Programming tips: efficiency

● Remove unnecessary operations from loops

● Slow comparisons mean slow sorting

Programming tips: efficiency

● Remove unnecessary operations from loops

● Slow comparisons mean slow sorting

● Profiling tools
– line_profiler (python)

– gprof, valgrind (C/C++) [valgrind is also good for
identifying memory leaks]

– dprofpp (Perl, though I hope you're not using Perl)

– Use various test data sizes to get an idea

Pointers in C++

Pointers in C++
● Pointers are memory addresses, they tell you

where the actual things are

Pointers in C++
● Pointers are memory addresses, they tell you

where the actual things are
● The address-of operator (&) obtains the

memory address of a variable

Pointers in C++
● Pointers are memory addresses, they tell you

where the actual things are
● The address-of operator (&) obtains the

memory address of a variable
● The dereference operator (*) accesses the

value stored at the pointed-to memory location

Pointers in C++
● Pointers are memory addresses, they tell you

where the actual things are
● The address-of operator (&) obtains the

memory address of a variable
● The dereference operator (*) accesses the

value stored at the pointed-to memory location
● Passing arguments by reference saves memory

and time

Pointers in C++
● Pointers are memory addresses, they tell you

where the actual things are
● The address-of operator (&) obtains the

memory address of a variable
● The dereference operator (*) accesses the

value stored at the pointed-to memory location
● Passing arguments by reference saves memory

and time
● -> is a shortcut for accessing attributes of

pointed-to structures
– a->element is the same as (*a).element

Arrays are pointers to blocks of memory

Arrays are pointers to blocks of memory

● Pointers “know” the size of the thing they point
to

Arrays are pointers to blocks of memory

● Pointers “know” the size of the thing they point
to

● Array indices are really just pointer arithmetic
and dereferencing
– a[12] is the same as *(a + 12)

– &a[3] is the same as a + 3

Arrays are pointers to blocks of memory

● Pointers “know” the size of the thing they point
to

● Array indices are really just pointer arithmetic
and dereferencing
– a[12] is the same as *(a + 12)

– &a[3] is the same as a + 3

● Large arrays should be dynamically allocated
(on the heap)
– Remember to delete anything created with “new”!

Sorting in C++

Sorting in C++

Suggestions for discussion topics?
● BLAST/multiple alignment
● Additional applications of HMMs (GENSCAN)
● Dynamic Bayesian Networks
● Frequentist vs. Bayesian statistics, probabilities

vs. likelihoods
● Dynamic programming
● More programming tips
● More language/tool specifics: C++, R, Unix tools
● Machine learning
● Other suggestions?

Inverting the Burrows-Wheeler transform

	Slide 1
	Slide 2
	Slide 3
	page4 (1)
	page4 (2)
	page5 (1)
	page5 (2)
	page5 (3)
	page6 (1)
	page6 (2)
	page6 (3)
	page7 (1)
	page7 (2)
	page7 (3)
	page7 (4)
	page7 (5)
	page7 (6)
	Slide 18
	page9 (1)
	page9 (2)
	page9 (3)
	page9 (4)
	page9 (5)
	page9 (6)
	page9 (7)
	Slide 26
	page11 (1)
	page11 (2)
	page11 (3)
	page12 (1)
	page12 (2)
	page12 (3)
	page12 (4)
	page12 (5)
	page12 (6)
	page13 (1)
	page13 (2)
	page13 (3)
	page13 (4)
	page14 (1)
	page14 (2)
	page15 (1)
	page15 (2)
	Slide 44
	Slide 45

