First discussion section agenda

* Introductions
* HW1 context/advice/questions
» C++/general programming tips

e Suggestions for future topics

Introductions

« Who am I? (not 24601)
- 4t year Genome Sciences graduate student, Borenstein lab

- Microbial communities
« Community design algorithms
e Taxonomic structure-gene content relationships

- Main languages: R, Python, C++, and recently some
Javascript

 Who are you?
- Department?
- Programming experience/language of choice?

Suffix trees

* Applications:

* Longest-repeated
substring

e String repetitions

 Compression $

* Genetic sequence g
analysis

*and more... 8 NAS

SIAM J. COMPUT. (© 1993 Society for Industrial and Applied Mathematics
Vol. 22, No. 5, pp. 935-948, October 1993 003

SUFFIX ARRAYS: A NEW METHOD FOR ON-LINE STRING SEARCHES*
UDI MANBER ™ AND GENE MYERS$

Abstract. A new and conceptually simple data structure, called a suffix array, for on-line string searches is
introduced in this paper. Constructing and querying suffix arrays is reduced to a sort and search paradigm that
employs novel algorithms. The main advantage of suffix arrays over suffix trees is that, in practice, they use three
to five times less space. From a complexity standpoint, suffix arrays permit on-line string searches of the type, “Is
W a substring of A?” to be answered in time O (P + log N), where P is the length of W and N is the length of A,
which is competitive with (and in some cases slightly better than) suffix trees. The only drawback is that in those
instances where the underlying alphabet is finite and small, suffix trees can be constructed in O (/) time in the worst
case, versus O(N log N) time for suffix arrays. However, an augmented algorithm is given that, regardless of the
alphabet size, constructs suffix arrays in O (N) expected time, albeit with lesser space efficiency. It is believed that
suffix arrays will prove to be better in practice than suffix trees for many applications.

SIAM J. COMPUT. (© 1993 Society for Industrial and Applied Mathematics
Vol. 22, No. 5, pp. 935-948, October 1993 003

SUFFIX ARRAYS: A NEW METHOD FOR ON-LINE STRING SEARCHES*
UDI MANBER ™ AND GENE MYERS$

Abstract. A new and conceptually simple data structure, called a suffix array, for on-line string searches is
introduced in this paper. Constructing and querying suffix arrays is reduced to a sort and search paradigm that
employs novel algorithms. The main advantage of suffix arrays over suffix trees is that, in practice, they use three
to five times less space. From a complexity standpoint, suffix arrays permit on-line string searches of the type, “Is
W a substring of A?” to be answered in time O (P + log N), where P is the length of W and N is the length of A,
which is competitive with (and in some cases slightly better than) suffix trees. The only drawback is that in those
instances where the underlying alphabet is finite and small, suffix trees can be constructed in O (N) time in the worst
case, versus O(N log N) time for suffix arrays. However, an augmented algorithm is given that, regardless of the
alphabet size, constructs suffix arrays in O(N) expected time, albeit with lesser space efficiency. It is believed that
suffix arrays will prove to be better in practice than suffix trees for many applications.

Udi Manber: Yahoo!, Amazon, Google, Youtube, currently at the NIH

Gene Myers: One of the creators of BLAST, currently at the Max
Planck Institute

Why suffix arrays?

Why suffix arrays?

« Comparison to suffix trees
- 5 times as space efficient as suffix trees
- Search times are similar

- Takes longer to construct (but technically can be
done with the same asymptotic time complexity)

Why suffix arrays?

« Comparison to suffix trees
- 5 times as space efficient as suffix trees
- Search times are similar

- Takes longer to construct (but technically can be
done with the same asymptotic time complexity)

* “A primary motivation for this paper was to be able to
efficiently answer on-line string queries for very long
genetic sequences (on the order of one million or more
symbols long). In practice, it is the space overhead of
the query data structure that limits the largest text that
may be handled.”

A cool example: Burrows-Wheeler transform

Transformation

All _ _ Taking Output
Input] Sorting All Rows into Lex Order
Rotations Last Column Last Column
“BANANA | ANANA | "B ANANA | "B
| “BANANA ANA | “BAN ANA | “BAN
A | "BANAN A | “BANAN A | “"BANAN
N NA | “BANA BANANA | * BANANA | * N
BANANA | - N N BNN"AA|A
ANA | “BAN NANA | “BA NANA | “BA
NANA | “BA NA | “BANA NA | “BANA
ANANA | "B ~“BANANA | “BANANA |
BANANA | * | “BANANA | “BANANA

A cool example: Burrows-Wheeler transform

Input

“BANANA |

All
Rotations

“BANANA |
| “BANANA
A | "BANAN
NA | “BANA
ANA | “BAN
NANA | “BA
ANANA | "B
BANANA | *

IS easily invertible

Transformation

Sorting All Rows into Lex Order

ANANA | "B
ANA | “BAN
A | “BANAN
BANANA | *
NANA | “BA
NA | “BANA
~“BANANA |
| “BANANA

Taking

Last Column

ANANA | "B
ANA | “BAN
A | “"BANAN
BANANA | *
NANA | “BA
NA | “BANA
“BANANA |
| “BANANA

Output
Last Column

BNN"AA|A

Leads to repetitive sequences, which are easier to compress, and

A cool example: Burrows-Wheeler transform

Input

“BANANA |

All
Rotations

“BANANA |
| “BANANA
A | "BANAN
NA | “BANA
ANA | “BAN
NANA | “BA
ANANA | "B
BANANA | *

IS easily invertible
e Used in Bowtie (short read aligner developed by Cole Trapnell)

Transformation

Sorting All Rows into Lex Order

ANANA | "B
ANA | “BAN
A | “BANAN
BANANA | *
NANA | “BA
NA | “BANA
~“BANANA |
| “BANANA

Taking

Last Column

ANANA | "B
ANA | “BAN
A | “"BANAN
BANANA | *
NANA | “BA
NA | “BANA
“BANANA |
| “BANANA

Output
Last Column

BNN"AA|A

Leads to repetitive sequences, which are easier to compress, and

Homework 1 tips

* Plan out your algorithm with pseudocode

Homework 1 tips

* Plan out your algorithm with pseudocode

* Think about what comparisons you need (and
don't need) to make

Homework 1 tips

* Plan out your algorithm with pseudocode

* Think about what comparisons you need (and
don't need) to make

» Get comfortable with pointers

Homework 1 tips

* Plan out your algorithm with pseudocode

* Think about what comparisons you need (and
don't need) to make

» Get comfortable with pointers
* Think about how to store inputs

Homework 1 tips

* Plan out your algorithm with pseudocode

* Think about what comparisons you need (and
don't need) to make

» Get comfortable with pointers
* Think about how to store inputs

* Think about how to store results (and
Intermediate results)

Homework 1 tips

* Plan out your algorithm with pseudocode

* Think about what comparisons you need (and
don't need) to make

» Get comfortable with pointers
* Think about how to store inputs

* Think about how to store results (and
Intermediate results)

* Try to format your output to match the template

Creating a suffix array

e Step 3:

- Sort the suffix pointers lexicographically
ACCTGCACTAAACCGTACACTGGGTTCAAGAGATTTCCC

Do AAACCGTACACTGGGTTCAAGAGATTTCCC
P11 AACCGTACACTGGGTTCAAGAGATTTCCC

Das AAGAGATTTCCC

Dy 7 ACACTGGGTTCAAGAGATTTCCC

D12 ACCGTACACTGGGTTCAAGAGATTTCCC

o ACCTGCACTAAACCGTACACTGGGTTCAAGAGATTTCCC
o ACTAAACCGTACACTGGGTTCAAGAGATTTCCC

P1o ACTGGGTTCAAGAGATTTCCC

Pao AGAGATTTCCC

D31 AGATTTCCC

s ATTTCCC

D>- CAAGAGATTTCCC

Programming style tips

Programming style tips

 The more readable your code is
— The easier it will be for me to help

- The more useful it will be to you later (especially if you
TA this class)

Programming style tips

 The more readable your code is
— The easier it will be for me to help

- The more useful it will be to you later (especially if you
TA this class)

* Tips for readabllity
- Intuitive and meaningful variable/function names

Programming style tips

 The more readable your code is
— The easier it will be for me to help

- The more useful it will be to you later (especially if you
TA this class)

* Tips for readabllity
- Intuitive and meaningful variable/function names

- Comments
* Describe what the different parts of your program are doing

Programming style tips

 The more readable your code is
— The easier it will be for me to help

- The more useful it will be to you later (especially if you
TA this class)

* Tips for readabllity
- Intuitive and meaningful variable/function names

- Comments

* Describe what the different parts of your program are doing
- Especially if you're doing something complicated

Programming style tips

 The more readable your code is
— The easier it will be for me to help

- The more useful it will be to you later (especially if you
TA this class)

* Tips for readabllity
- Intuitive and meaningful variable/function names

- Comments
* Describe what the different parts of your program are doing
- Especially if you're doing something complicated

- Simplicity is better to begin with, optimize later if
necessary

Programming style tips

 The more readable your code is
— The easier it will be for me to help

- The more useful it will be to you later (especially if you
TA this class)

* Tips for readabllity
- Intuitive and meaningful variable/function names

- Comments

* Describe what the different parts of your program are doing
- Especially if you're doing something complicated

- Simplicity is better to begin with, optimize later if
necessary

* Match the output template (for grading purposes)

Programming tips: testing

* Create small, easily-verified test cases
- Try to cover any edge cases you can think of

* Print intermediate output
- |Is the processed data as expected?

* Write incrementally, test as you go
- Assertion statements are helpful

Programming tips: efficiency

* Remove unnecessary operations from loops

Programming tips: efficiency

* Remove unnecessary operations from loops

» Slow comparisons mean slow sorting

Programming tips: efficiency

 Remove unnecessary operations from loops
» Slow comparisons mean slow sorting

* Profiling tools
- line_profiler (python)

- gprof, valgrind (C/C++) [valgrind is also good for
iIdentifying memory leaks]

- dprofpp (Perl, though | hope you're not using Perl)
- Use various test data sizes to get an idea

Pointers in C++

Pointers in C++

* Pointers are memory addresses, they tell you
where the actual things are

Pointers in C++

* Pointers are memory addresses, they tell you
where the actual things are

* The address-of operator (&) obtains the
memory address of a variable

Pointers in C++

* Pointers are memory addresses, they tell you
where the actual things are

* The address-of operator (&) obtains the
memory address of a variable

* The dereference operator (*) accesses the
value stored at the pointed-to memory location

Pointers in C++

Pointers are memory addresses, they tell you
where the actual things are

The address-of operator (&) obtains the
memory address of a variable

The dereference operator (*) accesses the
value stored at the pointed-to memory location

Passing arguments by reference saves memory
and time

Pointers in C++

* Pointers are memory addresses, they tell you
where the actual things are

* The address-of operator (&) obtains the
memory address of a variable

* The dereference operator (*) accesses the
value stored at the pointed-to memory location

* Passing arguments by reference saves memory
and time

» ->|s a shortcut for accessing attributes of
pointed-to structures

- a->element Is the same as (*a).element

Arrays are pointers to blocks of memory

Arrays are pointers to blocks of memory

* Pointers “know” the size of the thing they point
to

Arrays are pointers to blocks of memory

* Pointers “know” the size of the thing they point
to

* Array indices are really just pointer arithmetic
and dereferencing
- a[12] is the same as *(a + 12)
- &a[3] Isthe same asa + 3

Arrays are pointers to blocks of memory

* Pointers “know” the size of the thing they point
to

* Array indices are really just pointer arithmetic
and dereferencing
- a[12] is the same as *(a + 12)
- &a[3] Isthe same asa + 3

* Large arrays should be dynamically allocated
(on the heap)

- Remember to delete anything created with “new”!

Sorting In C++

function

qsort

void gsort (void* base, size t num, size t size,
int (*compar) (const void#*,const void*));

<cstdlib>

Sort elements of array

Sorts the num elements of the array pointed to by base, each element size bytes long, using the compar function to
determine the order.

The sorting algorithm used by this function compares pairs of elements by calling the specified compar function with
pointers to them as argument.

The function does not return any value, but modifies the content of the array pointed to by base reordering its
elements as defined by compar.

The order of equivalent elements is undefined.

Sorting In C++

function

qsort

<cstdlib>

void gsort (void* base, size t num, size t size,
int (*compar) (const void#*,const void*));

Sort elements of array

Sorts the num elements of the array pointed to by base, each element size bytes long, using the compar function to

determine the order.

The sorting algorithm used by this function compares pairs of elements by calling the specified compar function with

pointers to them as argument.

The function does not return any value, but modifies the content of the array pointed to by base reordering its

elements as defined by compar.

The order of equivalent elements is undefined.

/* gsort example */
#include <stdio.h> /* printf */
#include <stdlib.h> /* gsort */

int values[] = { 40, 10, 100, 90, 20, 25 };

int compare (const void * a, const void * b)
{
return (*(int*)a - *(int*)b);

}

int main ()
{
int n;
gsort (values, 6, sizeof(int), compare);
for (n=0; n<6; n++)
printf ("%d ",values[n]);
return 0;

ile(string filename, string& contents, int& num lines)

ifstream f;
f.open{filename.c str());
string line;
contents = "";
num lines = 8;
(getline(f, line)){
contents.append(line.substr{8, line.length(})});
num Lines++;

1

J

f.close() :

main{int argc, char* argvl[]}
string fn = argv[1];

string contents;

int num lines;

cout
cout -
cout . gth(25 characters (excluding

newlines) i

contents_cstring = (char*)contents.c str();
1t 1 = 8; 1 = contents.length(); i++){

]

rt{contents cstring[i] == *(contents cstring + 1i}};
rt{contents cstringl[i] == contents.at(i));

ssert(contents_cstringl[contents.length()] == a');

<cstdio=
<iostream=
=fstream=
<string>
=casserts
std;

void read file(string filename, string& contents, int& num lines)
{

ifstream f;

f.open(filename.c_str());

string line;

contents = "";
num_lines = 0;
(getline(f, line)){
contents.append(line.substr(®, line.length(}));
num Lines++;

}
f.close();

nt main(int argc, char* argv([])

string fn = argv[1];
string contents;
int num lines;

read file(fn, contents, num lines);

cout =< "Read: << fn =<

cout =< << num lines << " lines :

cout =< " * " << contents.length() << " characters (excluding
newlines)\n";

char* contents_cstring = (char*)contents.c str(};
(int 1 = 8; i < contents.length(); i++){

assert{contents cstring[i] == *({contents cstring + i));
assert(contents cstringl[i] == contents.at(i));

rt(contents_cstringlcontents.length()] ==

[2017-01-85 01:18:32 alex@Rincewind week 1]$ g++ example.cpp -o example
[2017-01-05 01:18:43 alex@Rincewind week 1]% ./example example.cpp
Read: example.cpp

* 43 lines

* 894 characters (excluding newlines)

Suggestions for discussion topics?

BLAST/multiple alignment
Additional applications of HMMs (GENSCAN)
Dynamic Bayesian Networks

Frequentist vs. Bayesian statistics, probabillities
vs. likelihoods

Dynamic programming

More programming tips

More language/tool specifics: C++, R, Unix tools
Machine learning

Other suggestions?

Inverting the Burrows-Wheeler transform

Inverse transformation

Transformation

Sorting All Rows into Lex Order

ANANA | “B
ANA | “BAN
A | “BANAN
BANANA | *
NANA | “BA
NA | “BANA
~“BANANA |
| “BANANA

Add 1

B— > == m

Sort 1

Input

BNN"AA | A

— 22O >

Add 2

BA
NA
NA
“B
AN
AN
1=

Al

Sort 2

AN
AN
Al
BA
NA
NA
"B

| Fat

	Slide 1
	Slide 2
	Slide 3
	page4 (1)
	page4 (2)
	page5 (1)
	page5 (2)
	page5 (3)
	page6 (1)
	page6 (2)
	page6 (3)
	page7 (1)
	page7 (2)
	page7 (3)
	page7 (4)
	page7 (5)
	page7 (6)
	Slide 18
	page9 (1)
	page9 (2)
	page9 (3)
	page9 (4)
	page9 (5)
	page9 (6)
	page9 (7)
	Slide 26
	page11 (1)
	page11 (2)
	page11 (3)
	page12 (1)
	page12 (2)
	page12 (3)
	page12 (4)
	page12 (5)
	page12 (6)
	page13 (1)
	page13 (2)
	page13 (3)
	page13 (4)
	page14 (1)
	page14 (2)
	page15 (1)
	page15 (2)
	Slide 44
	Slide 45

