
  

Discussion section #2

● HW1 questions?

● HW2: maximum-weight path on a DAG

● Shortest (minimum-weight) path algorithms

● Memoization
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● Create input file with one line for each vertex 
and edge

● Find the maximum-weight path on the graph
● Output:

– Path length

– Beginning and end vertex labels (positions)

– The labels of all the edges on the path, in order

HW2: maximum-weight path on a DAG
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● Similar to the homework
– Looking for the minimum instead of the maximum

– If no negative weights, then shortest path is 
technically weight 0

– Otherwise, update vertex weights in depth order as 
normal

Minimum-weight path on a DAG



  

● No depth order to follow
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● No depth order to follow
● Bellman-Ford algorithm (for a given start 

vertex)
– Set start vertex distance to 0

– All other vertex distances are infinity

– For each edge (u, v), if v's distance can be reduced 
by taking that edge, update v's distance

– Repeat |V| - 1 times

– How would you check for a negative cycle?

– What about checking all paths?

Minimum-weight path with cycles?
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Minimum-weight path with no 
negative edges?

● Djikstra's algorithm (for a given start vertex)
– Set start vertex distance to 0

– All other vertex distances are infininty

– Which vertex do we know the minimum-weight path 
to?

– Do we ever need to update a vertex more than 
once?
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Memoization
(similar to dynamic programming)

● Dynamic programming
– Can imagine filling a table of values

– Bottom-up approach

● Memoization
– Makes sense from a recursive standpoint

– Top-down approach

– Some scenarios where more intuitive
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RNA folding
function max_folds(seq)

    if length(seq) <= 1
        return 0
    current_max = 0
    for i in 1..length(seq)
      for j  in i..length(seq)
            if complement(seq[i], seq[j])
                left = seq[1:i-1]
                middle = seq[i:j]
                right = seq[j+1:length(seq)]
              num_folds = 1 + max_folds(left + right) 

+ max_folds(middle)
              if num_folds > current_max
                    current_max = num_folds

    return current_max



  

RNA folding
function max_folds(seq, solutions)
    if seq in solutions

 return solutions[seq] 
    if length(seq) <= 1
        return 0
    current_max = 0
    for i in 1..length(seq)
      for j  in i..length(seq)
            if complement(seq[i], seq[j])
                left = seq[1:i-1]
                middle = seq[i:j]
                right = seq[j+1:length(seq)]
              num_folds = 1 + max_folds(left + right, memo) 

+ max_folds(middle, memo)
              if num_folds > current_max
                    current_max = num_folds
    solutions[seq] = current_max
    return current_max
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paths with cycles algorithm?

● Floyd-Warshall
– Calculates the minimum-weight path between all 

pairs of vertices simultaneously
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A more efficient all minimum-weight 
paths with cycles algorithm?

● Floyd-Warshall
– Calculates the minimum-weight path between all 

pairs of vertices simultaneously

– Basic idea
● Given the shortest path between vertices u and v that 

only uses vertices 1 to k
– What is the shortest path between u and v that only uses 

vertices 1 to k + 1?

– How can we reconstruct a path?
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