

Discussion section #2

● HW1 questions?

● HW2: maximum-weight path on a DAG

● Shortest (minimum-weight) path algorithms

● Memoization

HW1 questions?

HW2: maximum-weight path on a DAG

● Create input file with one line for each vertex
and edge

HW2: maximum-weight path on a DAG

● Create input file with one line for each vertex
and edge

● Find the maximum-weight path on the graph

HW2: maximum-weight path on a DAG

● Create input file with one line for each vertex
and edge

● Find the maximum-weight path on the graph
● Output:

– Path length

– Beginning and end vertex labels (positions)

– The labels of all the edges on the path, in order

HW2: maximum-weight path on a DAG

HW2: maximum-weight path on a DAG

● Similar to the homework
– Looking for the minimum instead of the maximum

– If no negative weights, then shortest path is
technically weight 0

– Otherwise, update vertex weights in depth order as
normal

Minimum-weight path on a DAG

● No depth order to follow

Minimum-weight path with cycles?

● No depth order to follow
● Bellman-Ford algorithm (for a given start

vertex)

Minimum-weight path with cycles?

● No depth order to follow
● Bellman-Ford algorithm (for a given start

vertex)
– Set start vertex distance to 0

Minimum-weight path with cycles?

● No depth order to follow
● Bellman-Ford algorithm (for a given start

vertex)
– Set start vertex distance to 0

– All other vertex distances are infinity

Minimum-weight path with cycles?

● No depth order to follow
● Bellman-Ford algorithm (for a given start

vertex)
– Set start vertex distance to 0

– All other vertex distances are infinity

– For each edge (u, v), if v's distance can be reduced
by taking that edge, update v's distance

Minimum-weight path with cycles?

● No depth order to follow
● Bellman-Ford algorithm (for a given start

vertex)
– Set start vertex distance to 0

– All other vertex distances are infinity

– For each edge (u, v), if v's distance can be reduced
by taking that edge, update v's distance

– Repeat |V| - 1 times

Minimum-weight path with cycles?

● No depth order to follow
● Bellman-Ford algorithm (for a given start

vertex)
– Set start vertex distance to 0

– All other vertex distances are infinity

– For each edge (u, v), if v's distance can be reduced
by taking that edge, update v's distance

– Repeat |V| - 1 times

– How would you check for a negative cycle?

Minimum-weight path with cycles?

● No depth order to follow
● Bellman-Ford algorithm (for a given start

vertex)
– Set start vertex distance to 0

– All other vertex distances are infinity

– For each edge (u, v), if v's distance can be reduced
by taking that edge, update v's distance

– Repeat |V| - 1 times

– How would you check for a negative cycle?

– What about checking all paths?

Minimum-weight path with cycles?

Minimum-weight path with no
negative edges?

Minimum-weight path with no
negative edges?

● Djikstra's algorithm (for a given start vertex)

Minimum-weight path with no
negative edges?

● Djikstra's algorithm (for a given start vertex)
– Set start vertex distance to 0

Minimum-weight path with no
negative edges?

● Djikstra's algorithm (for a given start vertex)
– Set start vertex distance to 0

– All other vertex distances are infininty

Minimum-weight path with no
negative edges?

● Djikstra's algorithm (for a given start vertex)
– Set start vertex distance to 0

– All other vertex distances are infininty

– Which vertex do we know the minimum-weight path
to?

Minimum-weight path with no
negative edges?

● Djikstra's algorithm (for a given start vertex)
– Set start vertex distance to 0

– All other vertex distances are infininty

– Which vertex do we know the minimum-weight path
to?

– Do we ever need to update a vertex more than
once?

Memoization
(similar to dynamic programming)

Memoization
(similar to dynamic programming)

● Dynamic programming
– Can imagine filling a table of values

– Bottom-up approach

Memoization
(similar to dynamic programming)

● Dynamic programming
– Can imagine filling a table of values

– Bottom-up approach

● Memoization

Memoization
(similar to dynamic programming)

● Dynamic programming
– Can imagine filling a table of values

– Bottom-up approach

● Memoization
– Makes sense from a recursive standpoint

– Top-down approach

Memoization
(similar to dynamic programming)

● Dynamic programming
– Can imagine filling a table of values

– Bottom-up approach

● Memoization
– Makes sense from a recursive standpoint

– Top-down approach

– Some scenarios where more intuitive

RNA folding

AUGCUAUAUAAACGCGAUACUAUACGCGAUAAUCGCGCGAGA

RNA folding

AUGCUAUAUAAACGCGAUACUAUACGCGAUAAUCGCGCGAGA

RNA folding

AUGCUAUAUAAACGCGAUACUAUACGCGAUAAUCGCGCGAGA

RNA folding

AUGCUAUAUAAACGCGAUACUAUACGCGAUAAUCGCGCGAGA

RNA folding

AUGCUAUAUAAACGCGAUACUAUACGCGAUAAUCGCGCGAGA

AUGCUAUAUAAACGCGAUACUAUACGCGAUAAUCGCGCGAGA

RNA folding

AUGCUAUAUAAACGCGAUACUAUACGCGAUAAUCGCGCGAGA

AUGCUAUAUAAACGCGAUACUAUACGCGAUAAUCGCGCGAGA

RNA folding

AUGCUAUAUAAACGCGAUACUAUACGCGAUAAUCGCGCGAGA

AUGCUAUAUAAACGCGAUACUAUACGCGAUAAUCGCGCGAGA

RNA folding

AUGCUAUAUAAACGCGAUACUAUACGCGAUAAUCGCGCGAGA

AUGCUAUAUAAACGCGAUACUAUACGCGAUAAUCGCGCGAGA

RNA folding
function max_folds(seq)

 if length(seq) <= 1
 return 0
 current_max = 0
 for i in 1..length(seq)
 for j in i..length(seq)
 if complement(seq[i], seq[j])
 left = seq[1:i-1]
 middle = seq[i:j]
 right = seq[j+1:length(seq)]
 num_folds = 1 + max_folds(left + right)

+ max_folds(middle)
 if num_folds > current_max
 current_max = num_folds

 return current_max

RNA folding
function max_folds(seq, solutions)
 if seq in solutions

 return solutions[seq]
 if length(seq) <= 1
 return 0
 current_max = 0
 for i in 1..length(seq)
 for j in i..length(seq)
 if complement(seq[i], seq[j])
 left = seq[1:i-1]
 middle = seq[i:j]
 right = seq[j+1:length(seq)]
 num_folds = 1 + max_folds(left + right, memo)

+ max_folds(middle, memo)
 if num_folds > current_max
 current_max = num_folds
 solutions[seq] = current_max
 return current_max

A more efficient all minimum-weight
paths with cycles algorithm?

● Floyd-Warshall
– Calculates the minimum-weight path between all

pairs of vertices simultaneously

A more efficient all minimum-weight
paths with cycles algorithm?

● Floyd-Warshall
– Calculates the minimum-weight path between all

pairs of vertices simultaneously

– Basic idea
● Given the shortest path between vertices u and v that

only uses vertices 1 to k

A more efficient all minimum-weight
paths with cycles algorithm?

● Floyd-Warshall
– Calculates the minimum-weight path between all

pairs of vertices simultaneously

– Basic idea
● Given the shortest path between vertices u and v that

only uses vertices 1 to k
– What is the shortest path between u and v that only uses

vertices 1 to k + 1?

A more efficient all minimum-weight
paths with cycles algorithm?

● Floyd-Warshall
– Calculates the minimum-weight path between all

pairs of vertices simultaneously

– Basic idea
● Given the shortest path between vertices u and v that

only uses vertices 1 to k
– What is the shortest path between u and v that only uses

vertices 1 to k + 1?

– How can we reconstruct a path?

	Slide 1
	Slide 2
	Slide 3
	page4 (1)
	page4 (2)
	page4 (3)
	Slide 7
	Slide 8
	page7 (1)
	page7 (2)
	page7 (3)
	page7 (4)
	page7 (5)
	page7 (6)
	page7 (7)
	page7 (8)
	page8 (1)
	page8 (2)
	page8 (3)
	page8 (4)
	page8 (5)
	page8 (6)
	page9 (1)
	page9 (2)
	page9 (3)
	page9 (4)
	page9 (5)
	page10 (1)
	page10 (2)
	page10 (3)
	page10 (4)
	page10 (5)
	page10 (6)
	page10 (7)
	page10 (8)
	Slide 36
	Slide 37
	page13 (1)
	page13 (2)
	page13 (3)
	page13 (4)

