

Discussion Section 4

● HW2 comments/HW3 questions

● Edit graph optimization

● Useful data structures

HW2/3 Questions?

HW2/3 Questions?

● Comment on HW2:
– Hard coding an initial negative weight for non-start

nodes is problematic
● Any suggestions for what else you could do?

HW2/3 Questions?

● Comment on HW2:
– Hard coding an initial negative weight for non-start

nodes is problematic
● Any suggestions for what else you could do?

– Iteratively remove nodes without parents except for the start
node

HW2/3 Questions?

● Comment on HW2:
– Hard coding an initial negative weight for non-start

nodes is problematic
● Any suggestions for what else you could do?

– Iteratively remove nodes without parents except for the start
node

– Give each node a flag indicating if the path to it includes the start
node

HW 4: Edit graph

● Create an edit graph for 3 sequences using the
BLOSUM62 score matrix

● Output in the same format as HW2
● Run your highest-weight path program on the

edit graph to find the highest scoring path (local
alignment)

HW 4: Edit graph

Protein 1: M R Y I I V Y ...

Protein 2: M L V V L A N ...

Protein 3: M Y V I L V Y ...

HW 4: Edit graph

Protein 1: M R Y I I V Y ...

Protein 2: M L V V L A N ...

Protein 3: M Y V I L V Y ...

HW 4: Edit graph

Protein 1: M R Y I I V Y ...

Protein 2: M L V V L A N ...

Protein 3: M Y V I L V Y ...

Possible edges:

HW 4: Edit graph

Protein 1: M R Y I I V Y ...

Protein 2: M L V V L A N ...

Protein 3: M Y V I L V Y ...

Possible edges:

MMM MM- M-M M-- -MM -M- --M

HW 4: Edit graph

Protein 1: M R Y I I V Y ...

Protein 2: M L V V L A N ...

Protein 3: M Y V I L V Y ...

Possible edges:

MMM MM- M-M M-- -MM -M- --M

HW 4: Edit graph

Protein 1: M R Y I I V Y ...

Protein 2: M L V V L A N ...

Protein 3: M Y V I L V Y ...

Possible edges:

MMM MM- M-M M-- -MM -M- --M

RVI RV- R-I R-- -VI -V- --I

Edit Graphs

Edit Graphs

A C

G

A

Method of Four Russians

A C

G

A

Method of Four Russians

● Suppose scores are
either 1 for a match
(diagonal) or 0 for a skip
(horizontal or vertical)

A C

G

A

Method of Four Russians

Set top corner to be 0

● Suppose scores are
either 1 for a match
(diagonal) or 0 for a skip
(horizontal or vertical)

A C

G

A

Method of Four Russians

Set top corner to be 0

● Suppose scores are
either 1 for a match
(diagonal) or 0 for a skip
(horizontal or vertical)

Encode adjacent vertices as the
relative difference

Method of Four Russians

Maximum difference between these two values?

X Y

Method of Four Russians

Maximum difference between these two values?

X Y

● By definition, Y >= X – min(horizontal transition score)

Method of Four Russians

Maximum difference between these two values?

X Y

● By definition, Y >= X – min(horizontal transition score)
● What about Y > X + max(difference in transition scores)?

Method of Four Russians

Maximum difference between these two values?

X Y

● By definition, Y >= X – min(horizontal transition score)
● What about Y > X + max(difference in transition scores)?

● If the best path to Y came from the vertical or diagonal
edge, then that came from some vertex Z in the same
column as X

Method of Four Russians

Maximum difference between these two values?

X Y

● By definition, Y >= X – min(horizontal transition score)
● What about Y > X + max(difference in transition scores)?

● If the best path to Y came from the vertical or diagonal
edge, then that came from some vertex Z in the same
column as X
● The vertical path from Z to X differs from the path from Z

to Y by either

Method of Four Russians

Maximum difference between these two values?

X Y

● By definition, Y >= X – min(horizontal transition score)
● What about Y > X + max(difference in transition scores)?

● If the best path to Y came from the vertical or diagonal
edge, then that came from some vertex Z in the same
column as X
● The vertical path from Z to X differs from the path from Z

to Y by either
● a single horizontal

Method of Four Russians

Maximum difference between these two values?

X Y

● By definition, Y >= X – min(horizontal transition score)
● What about Y > X + max(difference in transition scores)?

● If the best path to Y came from the vertical or diagonal
edge, then that came from some vertex Z in the same
column as X
● The vertical path from Z to X differs from the path from Z

to Y by either
● a single horizontal
● a diagonal edge that replaced a vertical edge

A C

G

A

Method of Four Russians

Set top corner to be 0

● Suppose scores are
either 1 for a match
(diagonal) or 0 for a skip
(horizontal or vertical)

Encode adjacent vertices as the
relative difference

A C

G

A

Method of Four Russians

Set top corner to be 0

● Suppose scores are
either 1 for a match
(diagonal) or 0 for a skip
(horizontal or vertical)

Encode adjacent vertices as the
relative difference

0 or +1

A C

G

A

Method of Four Russians

Set top corner to be 0

● Suppose scores are
either 1 for a match
(diagonal) or 0 for a skip
(horizontal or vertical)

Encode adjacent vertices as the
relative difference

0 or +1 0, +1, or +2

A C

G

A

Method of Four Russians

Set top corner to be 0

● Suppose scores are
either 1 for a match
(diagonal) or 0 for a skip
(horizontal or vertical)

Encode adjacent vertices as the
relative difference

0 or +1 0, +1, or +2

0 or +1

A C

G

A

Method of Four Russians

Set top corner to be 0

● Suppose scores are
either 1 for a match
(diagonal) or 0 for a skip
(horizontal or vertical)

Encode adjacent vertices as the
relative difference

0 or +1 0, +1, or +2

0 or +1

0, +1, or +2

A C

G

A

Method of Four Russians

Set top corner to be 0

● Suppose scores are
either 1 for a match
(diagonal) or 0 for a skip
(horizontal or vertical)
● This can be relaxed as

long as all transition
scores are integers and
bounded

Encode adjacent vertices as the
relative difference

0 or +1 0, +1, or +2

0 or +1

0, +1, or +2

How fast is this?

How fast is this?

● Given two sequences of length N and M

How fast is this?

● Given two sequences of length N and M
● Use t-by-t blocks

How fast is this?

● Given two sequences of length N and M
● Use t-by-t blocks

– Reduces the dimensions to O(N/t * M/t)

How fast is this?

● Given two sequences of length N and M
● Use t-by-t blocks

– Reduces the dimensions to O(N/t * M/t)

– For every block you compute O(t) new scores

How fast is this?

● Given two sequences of length N and M
● Use t-by-t blocks

– Reduces the dimensions to O(N/t * M/t)

– For every block you compute O(t) new scores

– So new time is O(NM/t) + time to precompute
blocks

How fast is this?

● Given two sequences of length N and M
● Use t-by-t blocks

– Reduces the dimensions to O(N/t * M/t)

– For every block you compute O(t) new scores

– So new time is O(NM/t) + time to precompute
blocks

● Usually you choose t = O(log N) or O(log M), which you
can show will give a total time of O(NM/log N) or
O(NM/log M)

How fast is this?

● Given two sequences of length N and M
● Use t-by-t blocks

– Reduces the dimensions to O(N/t * M/t)

– For every block you compute O(t) new scores

– So new time is O(NM/t) + time to precompute
blocks

● Usually you choose t = O(log N) or O(log M), which you
can show will give a total time of O(NM/log N) or
O(NM/log M)

– The exact value of t depends on the total number of possible
transition scores

Some useful data structure features

Some useful data structure features

● Arrays
– Fast, pointer math is easy

Some useful data structure features

● Arrays
– Fast, pointer math is easy

● Linked lists
– Inserting/deleting/reordering is easy

Some useful data structure features

● Arrays
– Fast, pointer math is easy

● Linked lists
– Inserting/deleting/reordering is easy

● Hash tables/maps
– Good for looking up things

Some useful data structure features

● Arrays
– Fast, pointer math is easy

● Linked lists
– Inserting/deleting/reordering is easy

● Hash tables/maps
– Good for looking up things

● Trees
– Useful for sorting/searching

Some useful data structure features

● Arrays
– Fast, pointer math is easy

● Linked lists
– Inserting/deleting/reordering is easy

● Hash tables/maps
– Good for looking up things

● Trees
– Useful for sorting/searching

● Heaps
– Keeping track of extreme values

Some useful data structure applications

Some useful data structure applications

● Arrays
– Storing a sequence, accessing the N-th position

– Many other data structures use an underlying array

Some useful data structure applications

● Arrays
– Storing a sequence, accessing the N-th position

– Many other data structures use an underlying array

● Linked lists
– Graph searching (breadth-first)

Some useful data structure applications

● Arrays
– Storing a sequence, accessing the N-th position

– Many other data structures use an underlying array

● Linked lists
– Graph searching (breadth-first)

● Hash tables/maps
– Storing sample features

– Counting k-mer frequency

Some useful data structure applications

● Arrays
– Storing a sequence, accessing the N-th position

– Many other data structures use an underlying array

● Linked lists
– Graph searching (breadth-first)

● Hash tables/maps
– Storing sample features

– Counting k-mer frequency

● Trees
– k-dimensional trees for nearest neighbor searching

(PyCogent)

Some useful data structure applications

● Arrays
– Storing a sequence, accessing the N-th position

– Many other data structures use an underlying array

● Linked lists
– Graph searching (breadth-first)

● Hash tables/maps
– Storing sample features

– Counting k-mer frequency

● Trees
– k-dimensional trees for nearest neighbor searching

(PyCogent)

● Heaps
– Constructing a minimum spanning tree (Monocle does this,

not sure if it uses a heap though)

Arrays

● Getting the element at a particular index is fast

Arrays

● Getting the element at a particular index is fast

Contiguous Memory

Arrays

● Getting the element at a particular index is fast

Contiguous Memory

10 5 200 19 42 24 73 10

Arrays

● Getting the element at a particular index is fast

Contiguous Memory

10 5 200 19 42 24 73 10

Arrays

● Getting the element at a particular index is fast

Contiguous Memory

10 5 200 19 42 24 73 10

Arrays

● Getting the element at a particular index is fast

Contiguous Memory

10 5 200 19 42 24 73 10

Arrays

● Getting the element at a particular index is fast

Contiguous Memory

10 5 200 19 42 24 73 10

Arrays

● Getting the element at a particular index is fast

Contiguous Memory

10 5 200 19 42 24 73 10

Arrays

● Getting the element at a particular index is fast

Contiguous Memory

10 5 200 19 42 24 73 10

● Easier to modify than an array

Linked Lists

● Easier to modify than an array

Linked Lists

10 5 200 19 42 24 73 10

● Easier to modify than an array

Linked Lists

10 5 200 19 42 24 73 10

5748

● Easier to modify than an array

Linked Lists

10 5 200 19 42 24 73 10

5748

?

● Easier to modify than an array

Linked Lists

10 5 200 19 42 24 73 10

5748

?

● Fast for looking up values

Hash Tables and Hash Maps

● Fast for looking up values

Hash Tables and Hash Maps

Contiguous Memory

● Fast for looking up values

Hash Tables and Hash Maps

Contiguous Memory

Cow

● Fast for looking up values

Hash Tables and Hash Maps

Contiguous Memory

Cow
Super Secret

Hash Function

● Fast for looking up values

Hash Tables and Hash Maps

Contiguous Memory

Cow
Super Secret

Hash Function 4

● Fast for looking up values

Hash Tables and Hash Maps

Contiguous Memory

Cow
Super Secret

Hash Function 4

Cow

● Fast for looking up values

Hash Tables and Hash Maps

Contiguous Memory

Chicken
Super Secret

Hash Function 7

Cow Chicken

● Fast for looking up values

Hash Tables and Hash Maps

Contiguous Memory

Cow?
Super Secret

Hash Function 4

Cow Chicken

● Fast for looking up values

Hash Tables and Hash Maps

Contiguous Memory

Goat?
Super Secret

Hash Function 2

Cow Chicken

Brief aside: hash functions

Brief aside: hash functions

● Should generate
uniformly distributed
hash values

Brief aside: hash functions

● Should generate
uniformly distributed
hash values
– Why?

Brief aside: hash functions

● Should generate
uniformly distributed
hash values
– Why?

● Often used in
cryptography to verify
data

Brief aside: hash functions

● Should generate
uniformly distributed
hash values
– Why?

● Often used in
cryptography to verify
data
– Difficult to reverse

engineer a hash value
to a matching input

Brief aside: hash functions

● Should generate
uniformly distributed
hash values
– Why?

● Often used in
cryptography to verify
data
– Difficult to reverse

engineer a hash value
to a matching input

● Good for searching ranges

Trees

● Good for searching ranges

Trees

Any values
between 5
and 8
exclusive?

● Good for searching ranges

Trees

Any values
between 5
and 8
exclusive?

● Good for searching ranges

Trees

Any values
between 5
and 8
exclusive?

● Good for searching ranges

Trees

Any values
between 5
and 8
exclusive?

● Good for keeping track of extreme values

Heaps

● Good for keeping track of extreme values

Heaps

What's the
largest value?

● Similar in structure, but different rules

Trees and Heaps

Access Search Insert Delete

Array O(1) O(N) O(1) or O(N) O(1) or O(N)

Linked List O(N) O(N) O(1) or O(N) O(1) or O(N)

Hash Map N/A O(1) O(1)* O(1)*

Tree O(log N) O(log N) O(log N) O(log N)

D
at

a
S

tr
uc

tu
re

Operation

Access Search Insert Delete

Array O(1) O(N) O(1) or O(N) O(1) or O(N)

Linked List O(N) O(N) O(1) or O(N) O(1) or O(N)

Hash Map N/A O(1) O(1)* O(1)*

Tree O(log N) O(log N) O(log N) O(log N)

D
at

a
S

tr
uc

tu
re

Operation

* Actual worst case is O(N), but 'amortized' it's O(1)

Access Search Insert Delete

Array O(1) O(N) O(1) or O(N) O(1) or O(N)

Linked List O(N) O(N) O(1) or O(N) O(1) or O(N)

Hash Map N/A O(1) O(1)* O(1)*

Tree O(log N) O(log N) O(log N) O(log N)

D
at

a
S

tr
uc

tu
re

Operation

* Actual worst case is O(N), but 'amortized' it's O(1)

Heaps are specialized for find-min/max = O(1), delete-
min/max = O(log N), and insert = O(log N)

Optimizing for space efficiency

Sequence 1

S
eq

u
en

ce
 2

Optimizing for space efficiency

Sequence 1

S
eq

u
en

ce
 2

Optimizing for space efficiency

Sequence 1

S
eq

u
en

ce
 2

Midpoint in
sequence 1

Optimizing for space efficiency

Sequence 1

S
eq

u
en

ce
 2

Midpoint in
sequence 1

Optimizing for space efficiency

Sequence 1

S
eq

u
en

ce
 2

Midpoint in
sequence 1

Optimizing for space efficiency

Sequence 1

S
eq

u
en

ce
 2

Midpoint in
sequence 1

Optimizing for space efficiency

Sequence 1

S
eq

u
en

ce
 2

Midpoint in
sequence 1

How much time does this take?

How much time does this take?

● If sequence 1 has length N and sequence 2 has
length M
– First pass: NM time (update N nodes M times)

How much time does this take?

● If sequence 1 has length N and sequence 2 has
length M
– First pass: NM time (update N nodes M times)

– Second pass: (NM)/2 time (half of the area)

How much time does this take?

● If sequence 1 has length N and sequence 2 has
length M
– First pass: NM time (update N nodes M times)

– Second pass: (NM)/2 time (half of the area)

– Third pass: (NM)/4 (quarter of the area)

How much time does this take?

● If sequence 1 has length N and sequence 2 has
length M
– First pass: NM time (update N nodes M times)

– Second pass: (NM)/2 time (half of the area)

– Third pass: (NM)/4 (quarter of the area)

– And so on

How much time does this take?

● If sequence 1 has length N and sequence 2 has
length M
– First pass: NM time (update N nodes M times)

– Second pass: (NM)/2 time (half of the area)

– Third pass: (NM)/4 (quarter of the area)

– And so on
● 1 + 1/2 + 1/4 + … = 2, so 2NM or O(NM)

How much time does this take?

● If sequence 1 has length N and sequence 2 has
length M
– First pass: NM time (update N nodes M times)

– Second pass: (NM)/2 time (half of the area)

– Third pass: (NM)/4 (quarter of the area)

– And so on
● 1 + 1/2 + 1/4 + … = 2, so 2NM or O(NM)
● Awesome! That's the same asymptotic time as before!

How much time does this take?

● If sequence 1 has length N and sequence 2 has
length M
– First pass: NM time (update N nodes M times)

– Second pass: (NM)/2 time (half of the area)

– Third pass: (NM)/4 (quarter of the area)

– And so on
● 1 + 1/2 + 1/4 + … = 2, so 2NM or O(NM)
● Awesome! That's the same asymptotic time as before!
● But can we do better?

	Slide 1
	page2 (1)
	page2 (2)
	page2 (3)
	page2 (4)
	Slide 6
	page4 (1)
	page4 (2)
	page4 (3)
	page4 (4)
	page4 (5)
	page4 (6)
	page5 (1)
	page5 (2)
	page6 (1)
	page6 (2)
	page6 (3)
	page6 (4)
	page7 (1)
	page7 (2)
	page7 (3)
	page7 (4)
	page7 (5)
	page7 (6)
	page7 (7)
	page8 (1)
	page8 (2)
	page8 (3)
	page8 (4)
	page8 (5)
	page8 (6)
	page9 (1)
	page9 (2)
	page9 (3)
	page9 (4)
	page9 (5)
	page9 (6)
	page9 (7)
	page9 (8)
	page10 (1)
	page10 (2)
	page10 (3)
	page10 (4)
	page10 (5)
	page10 (6)
	page10 (7)
	page10 (8)
	page11 (1)
	page11 (2)
	page11 (3)
	page11 (4)
	page11 (5)
	page11 (6)
	page12 (1)
	page12 (2)
	page12 (3)
	page12 (4)
	page12 (5)
	page12 (6)
	page13 (1)
	page13 (2)
	page13 (3)
	page13 (4)
	page13 (5)
	page13 (6)
	page13 (7)
	page13 (8)
	page13 (9)
	page14 (1)
	page14 (2)
	page14 (3)
	page14 (4)
	page14 (5)
	page15 (1)
	page15 (2)
	page15 (3)
	page15 (4)
	page15 (5)
	page15 (6)
	Slide 80
	Slide 81
	Slide 82
	page19 (1)
	page19 (2)
	page19 (3)
	page19 (4)
	page19 (5)
	page19 (6)
	page20 (1)
	page20 (2)
	page20 (3)
	page20 (4)
	page20 (5)
	page21 (1)
	page21 (2)
	Slide 96
	page23 (1)
	page23 (2)
	page23 (3)
	page24 (1)
	page24 (2)
	page24 (3)
	page24 (4)
	page24 (5)
	page24 (6)
	page24 (7)
	page25 (1)
	page25 (2)
	page25 (3)
	page25 (4)
	page25 (5)
	page25 (6)
	page25 (7)
	page25 (8)

