
  

Discussion Section 4

● HW2 comments/HW3 questions

● Edit graph optimization

● Useful data structures
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HW2/3 Questions?

● Comment on HW2:
– Hard coding an initial negative weight for non-start 

nodes is problematic
● Any suggestions for what else you could do?

– Iteratively remove nodes without parents except for the start 
node

– Give each node a flag indicating if the path to it includes the start 
node



  

HW 4: Edit graph

● Create an edit graph for 3 sequences using the 
BLOSUM62 score matrix

● Output in the same format as HW2
● Run your highest-weight path program on the 

edit graph to find the highest scoring path (local 
alignment)
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HW 4: Edit graph

Protein 1: M R Y I I V Y ...

Protein 2: M L V V L A N ...

Protein 3: M Y V I L V Y ...

Possible edges:

MMM MM- M-M M-- -MM -M- --M

RVI RV- R-I R-- -VI -V- --I



  

Edit Graphs



  

Edit Graphs



  

A C

G

A

Method of Four Russians



  

A C

G

A

Method of Four Russians

● Suppose scores are 
either 1 for a match 
(diagonal) or 0 for a skip 
(horizontal or vertical)



  

A C

G

A

Method of Four Russians

Set top corner to be 0

● Suppose scores are 
either 1 for a match 
(diagonal) or 0 for a skip 
(horizontal or vertical)



  

A C

G

A

Method of Four Russians

Set top corner to be 0

● Suppose scores are 
either 1 for a match 
(diagonal) or 0 for a skip 
(horizontal or vertical)

Encode adjacent vertices as the 
relative difference



  

Method of Four Russians

Maximum difference between these two values?

X Y



  

Method of Four Russians

Maximum difference between these two values?

X Y

● By definition, Y >= X – min(horizontal transition score)



  

Method of Four Russians

Maximum difference between these two values?

X Y

● By definition, Y >= X – min(horizontal transition score)
● What about Y > X + max(difference in transition scores)?



  

Method of Four Russians

Maximum difference between these two values?

X Y

● By definition, Y >= X – min(horizontal transition score)
● What about Y > X + max(difference in transition scores)?

● If the best path to Y came from the vertical or diagonal 
edge, then that came from some vertex Z in the same 
column as X



  

Method of Four Russians

Maximum difference between these two values?

X Y

● By definition, Y >= X – min(horizontal transition score)
● What about Y > X + max(difference in transition scores)?

● If the best path to Y came from the vertical or diagonal 
edge, then that came from some vertex Z in the same 
column as X
● The vertical path from Z to X differs from the path from Z 

to Y by either



  

Method of Four Russians

Maximum difference between these two values?

X Y

● By definition, Y >= X – min(horizontal transition score)
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Method of Four Russians

Maximum difference between these two values?

X Y

● By definition, Y >= X – min(horizontal transition score)
● What about Y > X + max(difference in transition scores)?

● If the best path to Y came from the vertical or diagonal 
edge, then that came from some vertex Z in the same 
column as X
● The vertical path from Z to X differs from the path from Z 

to Y by either
● a single horizontal
● a diagonal edge that replaced a vertical edge
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Method of Four Russians

Set top corner to be 0

● Suppose scores are 
either 1 for a match 
(diagonal) or 0 for a skip 
(horizontal or vertical)
● This can be relaxed as 

long as all transition 
scores are integers and 
bounded

Encode adjacent vertices as the 
relative difference

0 or +1 0, +1, or +2

0 or +1

0, +1, or +2
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How fast is this?

● Given two sequences of length N and M
● Use t-by-t blocks

– Reduces the dimensions to O(N/t * M/t)

– For every block you compute O(t) new scores

– So new time is O(NM/t) + time to precompute 
blocks

● Usually you choose t = O(log N) or O(log M), which you 
can show will give a total time of O(NM/log N) or 
O(NM/log M)

– The exact value of t depends on the total number of possible 
transition scores
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Some useful data structure applications

● Arrays
– Storing a sequence, accessing the N-th position

– Many other data structures use an underlying array

● Linked lists
– Graph searching (breadth-first)

● Hash tables/maps
– Storing sample features

– Counting k-mer frequency

● Trees
– k-dimensional trees for nearest neighbor searching 

(PyCogent)

● Heaps
– Constructing a minimum spanning tree (Monocle does this, 

not sure if it uses a heap though)



  

Arrays

● Getting the element at a particular index is fast



  

Arrays

● Getting the element at a particular index is fast

Contiguous Memory



  

Arrays

● Getting the element at a particular index is fast

Contiguous Memory

10 5 200 19 42 24 73 10



  

Arrays

● Getting the element at a particular index is fast

Contiguous Memory

10 5 200 19 42 24 73 10



  

Arrays

● Getting the element at a particular index is fast

Contiguous Memory

10 5 200 19 42 24 73 10



  

Arrays

● Getting the element at a particular index is fast

Contiguous Memory

10 5 200 19 42 24 73 10



  

Arrays

● Getting the element at a particular index is fast

Contiguous Memory

10 5 200 19 42 24 73 10



  

Arrays

● Getting the element at a particular index is fast

Contiguous Memory

10 5 200 19 42 24 73 10



  

Arrays

● Getting the element at a particular index is fast

Contiguous Memory

10 5 200 19 42 24 73 10



  

● Easier to modify than an array

Linked Lists



  

● Easier to modify than an array

Linked Lists

10 5 200 19 42 24 73 10



  

● Easier to modify than an array

Linked Lists

10 5 200 19 42 24 73 10

5748



  

● Easier to modify than an array

Linked Lists

10 5 200 19 42 24 73 10

5748

?



  

● Easier to modify than an array

Linked Lists

10 5 200 19 42 24 73 10

5748

?



  

● Fast for looking up values

Hash Tables and Hash Maps



  

● Fast for looking up values

Hash Tables and Hash Maps

Contiguous Memory



  

● Fast for looking up values

Hash Tables and Hash Maps

Contiguous Memory

Cow



  

● Fast for looking up values

Hash Tables and Hash Maps

Contiguous Memory

Cow
Super Secret

Hash Function



  

● Fast for looking up values

Hash Tables and Hash Maps

Contiguous Memory

Cow
Super Secret

Hash Function 4



  

● Fast for looking up values

Hash Tables and Hash Maps

Contiguous Memory

Cow
Super Secret

Hash Function 4

Cow



  

● Fast for looking up values

Hash Tables and Hash Maps

Contiguous Memory

Chicken
Super Secret

Hash Function 7

Cow Chicken



  

● Fast for looking up values

Hash Tables and Hash Maps

Contiguous Memory

Cow?
Super Secret

Hash Function 4

Cow Chicken



  

● Fast for looking up values

Hash Tables and Hash Maps

Contiguous Memory

Goat?
Super Secret

Hash Function 2

Cow Chicken



  

Brief aside: hash functions



  

Brief aside: hash functions

● Should generate 
uniformly distributed 
hash values



  

Brief aside: hash functions

● Should generate 
uniformly distributed 
hash values
– Why?



  

Brief aside: hash functions

● Should generate 
uniformly distributed 
hash values
– Why?

● Often used in 
cryptography to verify 
data



  

Brief aside: hash functions

● Should generate 
uniformly distributed 
hash values
– Why?

● Often used in 
cryptography to verify 
data
– Difficult to reverse 

engineer a hash value 
to a matching input



  

Brief aside: hash functions

● Should generate 
uniformly distributed 
hash values
– Why?

● Often used in 
cryptography to verify 
data
– Difficult to reverse 

engineer a hash value 
to a matching input



  

● Good for searching ranges

Trees



  

● Good for searching ranges

Trees

Any values 
between 5 
and 8 
exclusive?



  

● Good for searching ranges

Trees

Any values 
between 5 
and 8 
exclusive?



  

● Good for searching ranges

Trees

Any values 
between 5 
and 8 
exclusive?
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Trees
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● Good for keeping track of extreme values

Heaps

What's the 
largest value?



  

● Similar in structure, but different rules

Trees and Heaps
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Access Search Insert Delete

Array O(1) O(N) O(1) or O(N) O(1) or O(N)

Linked List O(N) O(N) O(1) or O(N) O(1) or O(N)

Hash Map N/A O(1) O(1)* O(1)*

Tree O(log N) O(log N) O(log N) O(log N)

D
at

a 
S

tr
uc

tu
re

Operation

* Actual worst case is O(N), but 'amortized' it's O(1)

Heaps are specialized for find-min/max = O(1), delete-
min/max = O(log N), and insert = O(log N)
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How much time does this take?

● If sequence 1 has length N and sequence 2 has 
length M
– First pass: NM time (update N nodes M times)

– Second pass: (NM)/2 time (half of the area)

– Third pass: (NM)/4 (quarter of the area)

– And so on
● 1 + 1/2 + 1/4 + … = 2, so 2NM or O(NM)
● Awesome! That's the same asymptotic time as before!
● But can we do better?
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