

Discussion Section 5

● HW4 questions?

● BLAST algorithm

● If time: the Stack vs. the Heap
● Using new and delete in C++

HW4 Questions?

Basic Local Alignment Search Tool
(BLAST)

Basic Local Alignment Search Tool
(BLAST)

Original paper
has been cited
63,813 times

The general problem to solve

The general problem to solve

● Given a reference string of length n and a query
string of length p

The general problem to solve

● Given a reference string of length n and a query
string of length p

Reference: ABBBAABABBABAABABABAABBBAAAAABBABBA

The general problem to solve

● Given a reference string of length n and a query
string of length p

Reference: ABBBAABABBABAABABABAABBBAAAAABBABBA

Query: ABBA

The general problem to solve

● Given a reference string of length n and a query
string of length p

● Find matches to the query string in the reference string
with up to e differences

Reference: ABBBAABABBABAABABABAABBBAAAAABBABBA

Query: ABBA

The general problem to solve

● Given a reference string of length n and a query
string of length p

● Find matches to the query string in the reference string
with up to e differences

● Differences are the number of insertions, deletions,
and substitutions

Reference: ABBBAABABBABAABABABAABBBAAAAABBABBA

Query: ABBA

The general problem to solve

● Given a reference string of length n and a query
string of length p

● Find matches to the query string in the reference string
with up to e differences

● Differences are the number of insertions, deletions,
and substitutions

Reference: ABBBAABABBABAABABABAABBBAAAAABBABBA

Query: ABBA

e = 1

The general problem to solve

● Given a reference string of length n and a query
string of length p

● Find matches to the query string in the reference string
with up to e differences

● Differences are the number of insertions, deletions,
and substitutions

Reference: ABBBAABABBABAABABABAABBBAAAAABBABBA

Query: ABBA

e = 1
Some example matches

Categories of approximate match
algorithms

Categories of approximate match
algorithms

● Deterministic
– Find the exact set of locations in the reference

where the query matches given some threshold

Categories of approximate match
algorithms

● Deterministic
– Find the exact set of locations in the reference

where the query matches given some threshold

● Filter
– Returns false positives but no false negatives

Categories of approximate match
algorithms

● Deterministic
– Find the exact set of locations in the reference

where the query matches given some threshold

● Filter
– Returns false positives but no false negatives

● Heuristic
– Some false negatives (misses some matches)

– Some false positives (some incorrect matches)

Neighborhoods are sets of
approximate matches

Reference: ABBBAABABBABAABABABAABBBAAAAABBABBA

Query: ABBA

e = 1

Neighborhoods are sets of
approximate matches

Reference: ABBBAABABBABAABABABAABBBAAAAABBABBA

Query: ABBA

e = 1

1 difference neighborhood of ABBA:
N(ABBA) = {ABBA, BBBA, AABA, ABAA, ABBB, AABBA,

BABBA, ABBBA, ABABA, ABBAA, ABBAB, BBA, ABA, ABB}

Neighborhoods are sets of
approximate matches

Reference: ABBBAABABBABAABABABAABBBAAAAABBABBA

Query: ABBA

e = 1

1 difference neighborhood of ABBA:
N(ABBA) = {ABBA, BBBA, AABA, ABAA, ABBB, AABBA,

BABBA, ABBBA, ABABA, ABBAA, ABBAB, BBA, ABA, ABB}

Hey look, a match!

Neighborhoods are sets of
approximate matches

Reference: ABBBAABABBABAABABABAABBBAAAAABBABBA

Query: ABBA

e = 1

1 difference neighborhood of ABBA:
N(ABBA) = {ABBA, BBBA, AABA, ABAA, ABBB, AABBA,

BABBA, ABBBA, ABABA, ABBAA, ABBAB, BBA, ABA, ABB}

Hey look, a match! Hey look, another
match?

Neighborhoods are sets of
approximate matches

Reference: ABBBAABABBABAABABABAABBBAAAAABBABBA

Query: ABBA

e = 1

1 difference neighborhood of ABBA:
N(ABBA) = {ABBA, BBBA, AABA, ABAA, ABBB, AABBA,

BABBA, ABBBA, ABABA, ABBAA, ABBAB, BBA, ABA, ABB}

1 difference condensed neighborhood of ABBA:
NC(ABBA) = {BBBA, AABA, AABBA, BABBA, BBA, ABA, ABB}

Neighborhoods are sets of
approximate matches

Reference: ABBBAABABBABAABABABAABBBAAAAABBABBA

Query: ABBA

e = 1

1 difference neighborhood of ABBA:
N(ABBA) = {ABBA, BBBA, AABA, ABAA, ABBB, AABBA,

BABBA, ABBBA, ABABA, ABBAA, ABBAB, BBA, ABA, ABB}

1 difference condensed neighborhood of ABBA:
NC(ABBA) = {BBBA, AABA, AABBA, BABBA, BBA, ABA, ABB}

Only members without prefixes in the neighborhood (why?)

Basic idea for BLAST

Basic idea for BLAST

1. Partition query sequence in p/k k-mers

Basic idea for BLAST

1. Partition query sequence in p/k k-mers

2. Generate the e-neighborhood of the query k-
mers and find exact matches in the reference

Basic idea for BLAST

1. Partition query sequence in p/k k-mers

2. Generate the e-neighborhood of the query k-
mers and find exact matches in the reference

3. Check each candidate match by extending from
the ends of the k-mer

Basic idea for BLAST

1. Partition query sequence in p/k k-mers

2. Generate the e-neighborhood of the query k-
mers and find exact matches in the reference

3. Check each candidate match by extending from
the ends of the k-mer

What k-mer size?

Basic idea for BLAST

1. Partition query sequence in p/k k-mers

2. Generate the e-neighborhood of the query k-
mers and find exact matches in the reference

3. Check each candidate match by extending from
the ends of the k-mer

What k-mer size? Something around log n

BLAST in detail: Step 1

● Defining k-mers

BLAST in detail: Step 1

● Defining k-mers
– Should we use adjacent k-mers?

BLAST in detail: Step 1

● Defining k-mers
– Should we use adjacent k-mers?

Query: PPRHKKMFYAVG

k = 6

BLAST in detail: Step 1

● Defining k-mers
– Should we use adjacent k-mers?

Query: PPRHKKMFYAVG

k = 6

Adjacent k-mers: {PPRHKK, MFYAVG}

BLAST in detail: Step 1

● Defining k-mers
– Should we use adjacent k-mers?

● There could be some matches to regions spanning k-mer
boundaries

Query: PPRHKKMFYAVG

k = 6

Adjacent k-mers: {PPRHKK, MFYAVG}

BLAST in detail: Step 1

● Defining k-mers
– Should we use adjacent k-mers?

● There could be some matches to regions spanning k-mer
boundaries

– Try p-k+1 overlapping k-mers instead

Query: PPRHKKMFYAVG

k = 6

Adjacent k-mers: {PPRHKK, MFYAVG}

BLAST in detail: Step 1

● Defining k-mers
– Should we use adjacent k-mers?

● There could be some matches to regions spanning k-mer
boundaries

– Try p-k+1 overlapping k-mers instead

Query: PPRHKKMFYAVG

k = 6

Adjacent k-mers: {PPRHKK, MFYAVG}

Overlapping k-mers: {PPRHKK, PRHKKM, RHKKMF,
HKKMFY, KKMFYA, KMFYAV, MFYAVG}

BLAST in detail: Step 2

● Generating the e-neighborhood of each k-mer

BLAST in detail: Step 2

● Generating the e-neighborhood of each k-mer
– How should we define differences?

BLAST in detail: Step 2

● Generating the e-neighborhood of each k-mer
– How should we define differences?

● BLOSUM62 matrix for protein similarity

BLAST in detail: Step 2

● Generating the e-neighborhood of each k-mer
– How should we define differences?

● BLOSUM62 matrix for protein similarity

– Given k-mer “PQG”, some possible neighbors

BLAST in detail: Step 2

● Generating the e-neighborhood of each k-mer
– How should we define differences?

● BLOSUM62 matrix for protein similarity

– Given k-mer “PQG”, some possible neighbors
● PEG: score is 15
● PQA: score is 12

BLAST in detail: Step 2

● Generating the e-neighborhood of each k-mer
– How should we define differences?

● BLOSUM62 matrix for protein similarity

– Given k-mer “PQG”, some possible neighbors
● PEG: score is 15
● PQA: score is 12

– Use a cutoff score to define neighborhood

BLAST in detail: Step 2

● Generating the e-neighborhood of each k-mer
– How should we define differences?

● BLOSUM62 matrix for protein similarity

– Given k-mer “PQG”, some possible neighbors
● PEG: score is 15
● PQA: score is 12

– Use a cutoff score to define neighborhood

● Use an efficient method for identifying exact
matches

BLAST in detail: Step 2

● Generating the e-neighborhood of each k-mer
– How should we define differences?

● BLOSUM62 matrix for protein similarity

– Given k-mer “PQG”, some possible neighbors
● PEG: score is 15
● PQA: score is 12

– Use a cutoff score to define neighborhood

● Use an efficient method for identifying exact
matches
– Finite automaton, like a Mealy machine

Brief Mealy machine example

Brief Mealy machine example

Input Sequence:
0010110

Brief Mealy machine example

Start

Input Sequence:
0010110

Brief Mealy machine example

Start

S0

S1

Input Sequence:
0010110

Brief Mealy machine example

Start

S0

S1

Input/OutputInput/Output

Input Sequence:
0010110

Brief Mealy machine example

Start

S0

S1

Input/Output

0/0

Input/Output

Input Sequence:
0010110

Brief Mealy machine example

Start

S0

S1

Input/Output

0/0

1/0

Input/Output

Input Sequence:
0010110

Brief Mealy machine example

Start

S0

S1

Input/Output

0/0

1/0

0/0

1/0

1/10/1

Input/Output

Input Sequence:
0010110

Brief Mealy machine example

Start

S0

S1

Input/Output

0/0

1/0

0/0

1/0

1/10/1

Input/Output

Input Sequence:
0010110

When does it
output a 1?

Brief Mealy machine example

Start

S0

S1

Input/Output

0/0

1/0

0/0

1/0

1/10/1

Input/Output

Input Sequence:
0010110

When does it
output a 1?

When the
previous value
is different

BLAST in detail: Step 3

● Extend each 'seed' match into a local alignment

BLAST in detail: Step 3

● Extend each 'seed' match into a local alignment
– How do we extend?

“Double and Check” extension

“Double and Check” extension
Query: PPRHKKMFYAVG

k = 3, k-mer 'HKK'

“Double and Check” extension
Query: PPRHKKMFYAVG

k = 3, k-mer 'HKK'

Candidate match: GAMPRHKKQFFM

“Double and Check” extension
Query: PPRHKKMFYAVG

k = 3, k-mer 'HKK'

Candidate match: GAMPRHKKQFFM

● Look at 2k-mers that span 'HKK' in the query and see if
they have an e-match spanning the candidate match

“Double and Check” extension
Query: PPRHKKMFYAVG

k = 3, k-mer 'HKK'

Candidate match: GAMPRHKKQFFM

● Look at 2k-mers that span 'HKK' in the query and see if
they have an e-match spanning the candidate match
● If yes, continue doubling
● If no, then stop (provably correct)

“Double and Check” extension
Query: PPRHKKMFYAVG

k = 3, k-mer 'HKK'

Candidate match: GAMPRHKKQFFM

● Look at 2k-mers that span 'HKK' in the query and see if
they have an e-match spanning the candidate match
● If yes, continue doubling
● If no, then stop (provably correct)

Example:

2k-mer: 'PRHKKM'

New candidate match: GAMPRHKKQFFM

BLAST in detail: Step 3

● Extend each 'seed' match into a local alignment
– How do we extend? “double and check”

BLAST in detail: Step 3

● Extend each 'seed' match into a local alignment
– How do we extend? “double and check”

– Stop when score drops too far below the best score
seen

BLAST in detail: Step 3

● Extend each 'seed' match into a local alignment
– How do we extend? “double and check”

– Stop when score drops too far below the best score
seen

● Hmm, this sounds similar to something we've done

BLAST in detail: Step 3

● Extend each 'seed' match into a local alignment
– How do we extend? “double and check”

– Stop when score drops too far below the best score
seen

● Hmm, this sounds similar to something we've done

● If the score is high enough, report the full match

BLAST in detail: Step 3

● Extend each 'seed' match into a local alignment
– How do we extend? “double and check”

– Stop when score drops too far below the best score
seen

● Hmm, this sounds similar to something we've done

● If the score is high enough, report the full match
– What is high enough?

BLAST in detail: Step 3

● Extend each 'seed' match into a local alignment
– How do we extend? “double and check”

– Stop when score drops too far below the best score
seen

● Hmm, this sounds similar to something we've done

● If the score is high enough, report the full match
– What is high enough?

– Need some measure of significance

BLAST in detail: Step 3

● Extend each 'seed' match into a local alignment
– How do we extend? “double and check”

– Stop when score drops too far below the best score
seen

● Hmm, this sounds similar to something we've done

● If the score is high enough, report the full match
– What is high enough?

– Need some measure of significance
● E-values based on Gumbel extreme value distribution

BLAST time complexity?

BLAST time complexity?

● Costly operations

BLAST time complexity?

● Costly operations
– Generating the condensed k-mer neighborhoods

BLAST time complexity?

● Costly operations
– Generating the condensed k-mer neighborhoods

– Identifying candidate matches

BLAST time complexity?

● Costly operations
– Generating the condensed k-mer neighborhoods

– Identifying candidate matches

– Extending candidate matches

BLAST time complexity?

● Costly operations
– Generating the condensed k-mer neighborhoods

– Identifying candidate matches

– Extending candidate matches

● Generating neighborhoods and extending
matches can be done in sublinear time (in
terms of the size of the reference)

BLAST time complexity?

● Costly operations
– Generating the condensed k-mer neighborhoods

– Identifying candidate matches

– Extending candidate matches

● Generating neighborhoods and extending
matches can be done in sublinear time (in
terms of the size of the reference)
– Use a precomputed hash index to look up k-mer

matches

What about gapped alignment?

● Similar for steps 1 and 2 (list k-mers
neighborhoods, find candidate matches

What about gapped alignment?

● Similar for steps 1 and 2 (list k-mers
neighborhoods, find candidate matches

● Instead of extending
– Look for candidate match pairs closer together than

some distance threshold

What about gapped alignment?

● Similar for steps 1 and 2 (list k-mers
neighborhoods, find candidate matches

● Instead of extending
– Look for candidate match pairs closer together than

some distance threshold

– Then extend from ends of paired matches

What about gapped alignment?

● Similar for steps 1 and 2 (list k-mers
neighborhoods, find candidate matches

● Instead of extending
– Look for candidate match pairs closer together than

some distance threshold

– Then extend from ends of paired matches

● Can also consider continuing to combine paired
matches

Alternatively, you could have Gene
Myers explain BLAST

● https://www.youtube.com/watch?v=pVFX3V0Q
2Rg

● http://myerslab.mpi-cbg.de/wp-
content/uploads/2014/06/behind.blast_.pdf

https://www.youtube.com/watch?v=pVFX3V0Q2Rg
https://www.youtube.com/watch?v=pVFX3V0Q2Rg

Stack vs. Heap
Using new and delete in C++

Stack vs. Heap
Using new and delete in C++

● The stack is a preallocated
piece of memory given to
your program when it is run

Stack vs. Heap
Using new and delete in C++

● The stack is a preallocated
piece of memory given to
your program when it is run

The Stack

Stack vs. Heap
Using new and delete in C++

● The stack is a preallocated
piece of memory given to
your program when it is run

● Variables get put on the
stack as your program runs

The Stack

Stack vs. Heap
Using new and delete in C++

● The stack is a preallocated
piece of memory given to
your program when it is run

● Variables get put on the
stack as your program runs

The Stack

my_string

Stack vs. Heap
Using new and delete in C++

● The stack is a preallocated
piece of memory given to
your program when it is run

● Variables get put on the
stack as your program runs

The Stack

my_string

my_int

Stack vs. Heap
Using new and delete in C++

● The stack is a preallocated
piece of memory given to
your program when it is run

● Variables get put on the
stack as your program runs

The Stack

my_string

my_int

my_array

Stack vs. Heap
Using new and delete in C++

● The stack is a preallocated
piece of memory given to
your program when it is run

● Variables get put on the
stack as your program runs

● Different functions may
define part of the stack for
local variables

The Stack

my_string

my_int

my_array

Stack vs. Heap
Using new and delete in C++

● The stack is a preallocated
piece of memory given to
your program when it is run

● Variables get put on the
stack as your program runs

● Different functions may
define part of the stack for
local variables

The Stack

my_string

my_int

my_array

function_1
variables

Stack vs. Heap
Using new and delete in C++

● The stack is a preallocated
piece of memory given to
your program when it is run

● Variables get put on the
stack as your program runs

● Different functions may
define part of the stack for
local variables

– This is how scoping gets
determined

The Stack

my_string

my_int

my_array

function_1
variables

Stack vs. Heap
Using new and delete in C++

The Stack

my_string
my_int

my_array

function_1
variables

Stack vs. Heap
Using new and delete in C++

● The heap is all non-allocated space in memory

The Stack

my_string
my_int

my_array

function_1
variables

The Heap

Stack vs. Heap
Using new and delete in C++

● The heap is all non-allocated space in memory

The Stack

my_string
my_int

my_array

function_1
variables

The Heap

Stack vs. Heap
Using new and delete in C++

● The heap is all non-allocated space in memory

● Using new allocates space on the heap for a variable

The Stack

my_string
my_int

my_array

function_1
variables

The Heap

Stack vs. Heap
Using new and delete in C++

● The heap is all non-allocated space in memory

● Using new allocates space on the heap for a variable

The Stack

my_string
my_int

my_array

function_1
variables

new int

The Heap

Stack vs. Heap
Using new and delete in C++

● The heap is all non-allocated space in memory

● Using new allocates space on the heap for a variable

The Stack

my_string
my_int

my_array

function_1
variables

new int
int

The Heap

Stack vs. Heap
Using new and delete in C++

● The heap is all non-allocated space in memory

● Using new allocates space on the heap for a variable

● delete frees the space allocated by new

The Stack

my_string
my_int

my_array

function_1
variables

new int
int

● Technically, you don't have to use delete

Stack vs. Heap
Using new and delete in C++

● Technically, you don't have to use delete
– But what problems could this cause?

Stack vs. Heap
Using new and delete in C++

● Technically, you don't have to use delete
– But what problems could this cause?

● Memory can't be used again while your program is
running

Stack vs. Heap
Using new and delete in C++

● Technically, you don't have to use delete
– But what problems could this cause?

● Memory can't be used again while your program is
running

– It can't even be used by other programs

Stack vs. Heap
Using new and delete in C++

● Technically, you don't have to use delete
– But what problems could this cause?

● Memory can't be used again while your program is
running

– It can't even be used by other programs

– It's a good idea to delete things when you're done
using them so you're not wasting memory

Stack vs. Heap
Using new and delete in C++

	Slide 1
	Slide 2
	page3 (1)
	page3 (2)
	page4 (1)
	page4 (2)
	page4 (3)
	page4 (4)
	page4 (5)
	page4 (6)
	page4 (7)
	Slide 12
	page6 (1)
	page6 (2)
	page6 (3)
	page6 (4)
	page7 (1)
	page7 (2)
	Slide 19
	Slide 20
	page10 (1)
	page10 (2)
	page11 (1)
	page11 (2)
	page11 (3)
	page11 (4)
	page11 (5)
	page11 (6)
	page12 (1)
	page12 (2)
	page12 (3)
	page12 (4)
	page12 (5)
	page12 (6)
	page12 (7)
	page13 (1)
	page13 (2)
	page13 (3)
	page13 (4)
	page13 (5)
	page13 (6)
	page13 (7)
	page13 (8)
	page14 (1)
	page14 (2)
	page14 (3)
	page14 (4)
	page14 (5)
	page14 (6)
	page14 (7)
	page14 (8)
	page14 (9)
	page14 (10)
	page15 (1)
	page15 (2)
	page16 (1)
	page16 (2)
	page16 (3)
	page16 (4)
	page16 (5)
	page16 (6)
	page17 (1)
	page17 (2)
	page17 (3)
	page17 (4)
	page17 (5)
	page17 (6)
	page17 (7)
	page18 (1)
	page18 (2)
	page18 (3)
	page18 (4)
	page18 (5)
	page18 (6)
	page18 (7)
	page19 (1)
	page19 (2)
	page19 (3)
	page19 (4)
	Slide 80
	page21 (1)
	page21 (2)
	page21 (3)
	page21 (4)
	page21 (5)
	page21 (6)
	page21 (7)
	page21 (8)
	page21 (9)
	page21 (10)
	page22 (1)
	page22 (2)
	page22 (3)
	page22 (4)
	page22 (5)
	page22 (6)
	page22 (7)
	page23 (1)
	page23 (2)
	page23 (3)
	page23 (4)
	page23 (5)

