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The general problem to solve

● Given a reference string of length n and a query 
string of length p

● Find matches to the query string in the reference string 
with up to e differences

● Differences are the number of insertions, deletions, 
and substitutions

Reference: ABBBAABABBABAABABABAABBBAAAAABBABBA

Query: ABBA

e = 1
Some example matches
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Categories of approximate match 
algorithms

● Deterministic
– Find the exact set of locations in the reference 

where the query matches given some threshold

● Filter
– Returns false positives but no false negatives

● Heuristic
– Some false negatives (misses some matches)

– Some false positives (some incorrect matches)
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Neighborhoods are sets of 
approximate matches

Reference: ABBBAABABBABAABABABAABBBAAAAABBABBA

Query: ABBA

e = 1

1 difference neighborhood of ABBA:
N(ABBA) = {ABBA, BBBA, AABA, ABAA, ABBB, AABBA, 

BABBA, ABBBA, ABABA, ABBAA, ABBAB, BBA, ABA, ABB}

1 difference condensed neighborhood of ABBA:
NC(ABBA) = {BBBA, AABA, AABBA, BABBA, BBA, ABA, ABB}

Only members without prefixes in the neighborhood (why?)



  

Basic idea for BLAST



  

Basic idea for BLAST

1. Partition query sequence in p/k k-mers



  

Basic idea for BLAST

1. Partition query sequence in p/k k-mers

2. Generate the e-neighborhood of the query k-
mers and find exact matches in the reference



  

Basic idea for BLAST

1. Partition query sequence in p/k k-mers

2. Generate the e-neighborhood of the query k-
mers and find exact matches in the reference

3. Check each candidate match by extending from 
the ends of the k-mer



  

Basic idea for BLAST

1. Partition query sequence in p/k k-mers

2. Generate the e-neighborhood of the query k-
mers and find exact matches in the reference

3. Check each candidate match by extending from 
the ends of the k-mer

What k-mer size?



  

Basic idea for BLAST

1. Partition query sequence in p/k k-mers

2. Generate the e-neighborhood of the query k-
mers and find exact matches in the reference

3. Check each candidate match by extending from 
the ends of the k-mer

What k-mer size? Something around log n
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BLAST in detail: Step 1

● Defining k-mers
– Should we use adjacent k-mers?

● There could be some matches to regions spanning k-mer 
boundaries

– Try p-k+1 overlapping k-mers instead

Query: PPRHKKMFYAVG

k = 6

Adjacent k-mers: {PPRHKK, MFYAVG}

Overlapping k-mers: {PPRHKK, PRHKKM, RHKKMF, 
HKKMFY, KKMFYA, KMFYAV, MFYAVG}



  

BLAST in detail: Step 2

● Generating the e-neighborhood of each k-mer



  

BLAST in detail: Step 2

● Generating the e-neighborhood of each k-mer
– How should we define differences?



  

BLAST in detail: Step 2

● Generating the e-neighborhood of each k-mer
– How should we define differences?

● BLOSUM62 matrix for protein similarity



  

BLAST in detail: Step 2

● Generating the e-neighborhood of each k-mer
– How should we define differences?

● BLOSUM62 matrix for protein similarity

– Given k-mer “PQG”, some possible neighbors



  

BLAST in detail: Step 2

● Generating the e-neighborhood of each k-mer
– How should we define differences?

● BLOSUM62 matrix for protein similarity

– Given k-mer “PQG”, some possible neighbors
● PEG: score is 15
● PQA: score is 12



  

BLAST in detail: Step 2

● Generating the e-neighborhood of each k-mer
– How should we define differences?

● BLOSUM62 matrix for protein similarity

– Given k-mer “PQG”, some possible neighbors
● PEG: score is 15
● PQA: score is 12

– Use a cutoff score to define neighborhood



  

BLAST in detail: Step 2

● Generating the e-neighborhood of each k-mer
– How should we define differences?

● BLOSUM62 matrix for protein similarity

– Given k-mer “PQG”, some possible neighbors
● PEG: score is 15
● PQA: score is 12

– Use a cutoff score to define neighborhood

● Use an efficient method for identifying exact 
matches



  

BLAST in detail: Step 2

● Generating the e-neighborhood of each k-mer
– How should we define differences?

● BLOSUM62 matrix for protein similarity

– Given k-mer “PQG”, some possible neighbors
● PEG: score is 15
● PQA: score is 12

– Use a cutoff score to define neighborhood

● Use an efficient method for identifying exact 
matches
– Finite automaton, like a Mealy machine
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Brief Mealy machine example

Start

S0

S1

Input/Output

0/0

1/0

0/0

1/0

1/10/1

Input/Output

Input Sequence: 
0010110

When does it 
output a 1?

When the 
previous value 
is different



  

BLAST in detail: Step 3

● Extend each 'seed' match into a local alignment



  

BLAST in detail: Step 3

● Extend each 'seed' match into a local alignment
– How do we extend?
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“Double and Check” extension
Query: PPRHKKMFYAVG

k = 3, k-mer 'HKK'

Candidate match: GAMPRHKKQFFM

● Look at 2k-mers that span 'HKK' in the query and see if 
they have an e-match spanning the candidate match
● If yes, continue doubling
● If no, then stop (provably correct)

Example:

2k-mer: 'PRHKKM'

New candidate match: GAMPRHKKQFFM
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BLAST in detail: Step 3

● Extend each 'seed' match into a local alignment
– How do we extend? “double and check”

– Stop when score drops too far below the best score 
seen 

● Hmm, this sounds similar to something we've done

● If the score is high enough, report the full match
– What is high enough?

– Need some measure of significance
● E-values based on Gumbel extreme value distribution
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BLAST time complexity?

● Costly operations
– Generating the condensed k-mer neighborhoods

– Identifying candidate matches

– Extending candidate matches

● Generating neighborhoods and extending 
matches can be done in sublinear time (in 
terms of the size of the reference)
– Use a precomputed hash index to look up k-mer 

matches
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What about gapped alignment?

● Similar for steps 1 and 2 (list k-mers 
neighborhoods, find candidate matches

● Instead of extending
– Look for candidate match pairs closer together than 

some distance threshold

– Then extend from ends of paired matches

● Can also consider continuing to combine paired 
matches



  

Alternatively, you could have Gene 
Myers explain BLAST

● https://www.youtube.com/watch?v=pVFX3V0Q
2Rg

● http://myerslab.mpi-cbg.de/wp-
content/uploads/2014/06/behind.blast_.pdf

https://www.youtube.com/watch?v=pVFX3V0Q2Rg
https://www.youtube.com/watch?v=pVFX3V0Q2Rg
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Stack vs. Heap
Using new and delete in C++

● The stack is a preallocated 
piece of memory given to 
your program when it is run

● Variables get put on the 
stack as your program runs

● Different functions may 
define part of the stack for 
local variables

– This is how scoping gets 
determined
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The Heap

Stack vs. Heap
Using new and delete in C++

● The heap is all non-allocated space in memory

● Using new allocates space on the heap for a variable

● delete frees the space allocated by new

The Stack

my_string
my_int

my_array

function_1
variables

new int
int
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● Technically, you don't have to use delete
– But what problems could this cause?

● Memory can't be used again while your program is 
running

– It can't even be used by other programs

– It's a good idea to delete things when you're done 
using them so you're not wasting memory

Stack vs. Heap
Using new and delete in C++
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