Discussion Section 6

« HW 5 tips and questions?

* Motif-finding algorithms

* If time: using valgrind to find memory leaks/out
of bounds bugs

HW 5 output

* What you report:
- Nucleotide histogram
- Background frequency
— Count matrix (-10 to 10 nucleotides)
- Frequency matrix (-10 to 10 nucleotides)
- Weight matrix (-10 to 10 nucleotides)
- Maximum score
- Score histogram for CDS
— Score histogram for all positions
- List of non-CDS positions with score >= 10

HW 5 tips
* Looking only for 'CDS' features

HW 5 tips
* Looking only for 'CDS' features

e 'complement’ indicates the reverse complement

HW 5 tips
* Looking only for 'CDS' features

e 'complement’ indicates the reverse complement

* 'ORIGIN' section contains the actual sequence

HW 5 tips
Looking only for 'CDS' features

'‘complement’ indicates the reverse complement
'ORIGIN' section contains the actual sequence

Positions downstream of the translation start
site could be noncontiguous

HW 5 tips
Looking only for 'CDS' features

'‘complement’ indicates the reverse complement
'ORIGIN' section contains the actual sequence

Positions downstream of the translation start
site could be noncontiguous

- join(1000..1008,1200..1500)

HW 5 tips

Looking only for 'CDS' features
‘complement’ indicates the reverse complement
'ORIGIN' section contains the actual sequence

Positions downstream of the translation start site
could be noncontiguous

-]0in(1000..1008,1200..1500)

Precision matters! (use doubles in C++)

Watch out for multi-line joins

CDS join(10183..10943,11138..11246,11408..11525,11697..11815,
12006..12056,12284..12445,12661..12792,12989..13135,
13293..13400,13597..13661,13848..13957,14104..14208,
14364..14440,14606..14773,14909..15013)
/locus_tag="PTSG_00005"

/codon_start=1
/product="hypothetical protein"
/protein_id="EGD71989.1"

/db_xref="GIl:326426419"
/translation="MMMMMMMMRPCCSLPSTWWLVVVVLAAACCAATPTAAAVPAAAP

AEAADPSVVNVGQFVVSLDEDGVLSAVRNPAQMPNPHLAWHSTGEILEVAASKMYLHG...“

Weight matrix definition

 log,(frequency of base In start site/background
frequency of base)

* use -99 If frequency Is zero (alternative to
pseudocounts)

Score histogram for CDS and all sites

* Bins labeled with integer values

- Round scores down to determine
the bin

 Print all bins with at least one
count

 Put all scores less than -50 into
one bin

Score Histogram All;
-5101880
-4 76413
-3 54704
-2 38081
-1 27202
0 21440
118671

2 18825

3 19072
418675
517308
6 14429

7 10595

8 6915

9 3886

10 1850
11 699

12 225

13 46

14 4

[t-50 6132782

HW 5 questions?

More general motif-finding problem

Sequence 1 G TACTATCCAGCTATCGG
Sequence 2 TAGGGCAACTTTTCAGTZC
Sequence 3 ACGTCATATGGATCTCGG
Sequence 4 TTCAAAGCAACCCAAATA
Sequence 5 C T TGGAACTGGTTATCAG
Sequence 6 ACGATGCCATTACCATAA

Sequence 7/ AAAGATCAGTATGGCACT

More general motif-finding problem

e Basic idea:

- Given a set of t sequences of length n

e FIind a set of k-mers with maximum consensus score

 One k-mer from each sequence

More general motif-finding problem

Sequence 1 G TACTATCCAGCTATCGG
Sequence 2 TAGGGCAACTTTTCAGTTC
Sequence 3 ACGTCATATGGATCTCG®G
Sequence 4 TTCAAAGCAACCCAAATA
Sequence 5 C T TGGAACTGGTTATCAG
Sequence 6 ACGATGCCATTACCATAA

Sequence 7/ AAAGATCAGTATGGCACT

More general motif-finding problem

Sequence 1 AT CCAGCT
Sequence 2 GGGCAACT
Sequence 3 AT GGATCT
Sequence 4 AAGCAACC
Sequence 5 TTGGAACT
Sequence 6 AT GCCATT

Sequence 7 ATGGCACT

More general motif-finding problem

Sequence
Sequence
Sequence
Sequence
Sequence
Sequence

Sequence

1ATCCA

2

3

G

A

G

T

G

C

A

A

G

C

T

A510055¢00

More general motif-finding problem

Sequence
Sequence
Sequence
Sequence
Sequence
Sequence

Sequence

1ATCCA

2

3

G

A

G

T

G

C

A

A

G

C

T

— >
— U1

ol =

O NO)
O NO)
© Ui

= Ul
= ©
o ©

More general motif-finding problem

Sequence
Sequence
Sequence
Sequence
Sequence
Sequence

Sequence

1ATCCA

2

3

G

A

G

T

G

C

A

A

G

C

T

A — >
= = Ul

= Ul
QO NONO
woo
O O Ul

= = Ul

OrrOo
O Ne) N

More general motif-finding problem

Sequence
Sequence
Sequence
Sequence
Sequence
Sequence

Sequence

1ATCCA

2

3

G

A

G

T

G

C

A

A

G

C

T

o>
DK~ Ul

Ok Ul R

N ONONO)
B~ w oo
N © O U

O = Ul

N ON IO

O N NO)

More general motif-finding problem

Sequence
Sequence
Sequence
Sequence
Sequence
Sequence

Sequence

1ATCCA

2

3

G

A

G

T

G

C

A

A

G

C

T

A510065500
T1500011°%6
G116 30100
CO0O0O14206061
Consensus:

ATGCAACT

More general motif-finding problem

Sequence
Sequence
Sequence
Sequence
Sequence
Sequence

Sequence

1ATCCA

2

3

G

A

G

T

G

C

A

A

G

C

T

N o - >
D~ Ul
Ok Ul R
O NONC)
W oOoOo
N © © Ul
D~ Ul
O NON N O)
O NONO)

Consensus:
ATGCAACT

Score:
5+5+6+4+5+5+6+6
=42

Motif search tree representation

Motif search tree representation

y \
4 N
\

Root

Motif search tree representation

Root

Sequence 1

Motif search tree representation

y - \\\
y’
£ \
A
[|

ACTAC(/

\\\\ : //,,,,

Root

Sequence 1

Motif search tree representation

y - \\\
y’
£ \
A
[|

ACTACCA CTACCAG

\\\\ : //,,,,

Root

Sequence 1

Motif search tree representation

y - \\\
y’
£ \
A
[|

Root

ACTACCA CTACCAG

Sequence 1

Motif search tree representation

y. - \\\
y
£ A
A
[|

Root

ACTACCA CTACCAG

Sequence 1

Sequence 2

Motif search tree representation

Root

ACTACCA CTACCAG

Sequence 1

Sequence 2

Motif search tree representation

Root

ACTACCA CTACCAG

Sequence 1

Sequence 2

Motif search tree representation

Root

ACTACCA CTACCAG

Sequence 1
_ .
o000 00 00 00
Sequence 2
[L L
o L L
L L L

Motif search tree representation

 Each vertex represents a motif start location

Motif search tree representation

 Each vertex represents a motif start location

 Each level (except the root) corresponds to a
sequence (t levels)

Motif search tree representation

 Each vertex represents a motif start location

 Each level (except the root) corresponds to a
sequence (t levels)

* n —k + 1 children per vertex (possible motif
start locations in next sequence)

Motif search tree representation

Each vertex represents a motif start location

Each level (except the root) corresponds to a
sequence (t levels)

n — k + 1 children per vertex (possible motif
start locations in next sequence)

Leaf vertices are complete motif sets

Motif search tree brute force
solution

* Brute force algorithm:

Motif search tree brute force
solution

* Brute force algorithm:
— Traverse the tree iIn some order

Motif search tree brute force
solution

* Brute force algorithm:
— Traverse the tree iIn some order

- At each leaf, calculate the score for the set of
starting positions

Motif search tree brute force
solution

* Brute force algorithm:
— Traverse the tree iIn some order

- At each leaf, calculate the score for the set of
starting positions

- Keep track of the best score seen

Motif search tree brute force
solution

* Brute force algorithm:
— Traverse the tree iIn some order

- At each leaf, calculate the score for the set of
starting positions

- Keep track of the best score seen

e« O(knt)

Motif search tree brute force
solution

* Brute force algorithm:
— Traverse the tree iIn some order

- At each leaf, calculate the score for the set of
starting positions

- Keep track of the best score seen
e O(knt)

« What could we do better?

Motif search tree branch-and-bound
Improvement

 Basic idea

Motif search tree branch-and-bound
Improvement

e Basic idea
- At each vertex, determine a bound on the score

Motif search tree branch-and-bound
Improvement

e Basic idea
- At each vertex, determine a bound on the score
- |f the bound is too low, don't use this branch

Motif search tree branch-and-bound
Improvement

e Basic idea
- At each vertex, determine a bound on the score
- |f the bound is too low, don't use this branch

* More specifically

Motif search tree branch-and-bound
Improvement

e Basic idea
- At each vertex, determine a bound on the score
- |f the bound is too low, don't use this branch

* More specifically
- Given the partial consensus for i sequences chosen

Motif search tree branch-and-bound
Improvement

e Basic idea
- At each vertex, determine a bound on the score
- |f the bound is too low, don't use this branch

* More specifically

- Given the partial consensus for i sequences chosen

* The rest of the sequences can improve the score by at
most (t - 1) X k

Motif search tree branch-and-bound
Improvement

e Basic idea
- At each vertex, determine a bound on the score
- |f the bound is too low, don't use this branch

* More specifically

- Given the partial consensus for i sequences chosen

* The rest of the sequences can improve the score by at
most (t - 1) X k
- When does this happen?

Motif search tree branch-and-bound
Improvement

e Basic idea
- At each vertex, determine a bound on the score
- |f the bound is too low, don't use this branch

* More specifically

- Given the partial consensus for i sequences chosen

* The rest of the sequences can improve the score by at
most (t - 1) X k
- When does this happen? The rest match the partial consensus

Motif search tree branch-and-bound
Improvement

e Basic idea
- At each vertex, determine a bound on the score
- |f the bound is too low, don't use this branch

* More specifically

- Given the partial consensus for i sequences chosen

* The rest of the sequences can improve the score by at
most (t - 1) X k
- When does this happen? The rest match the partial consensus
- So If current score + (t - /) X k Is less than the best
score so far, don't bother checking

Another way to consider the
problem: median string

Another way to consider the
problem: median string

» Just phrased a different way

Another way to consider the
problem: median string

» Just phrased a different way
- Given a set of t sequences, each of length n

Another way to consider the
problem: median string

» Just phrased a different way

- Given a set of t sequences, each of length n

* Find the string V of length k that minimized the Hamming
distance between V and one k-mer from each sequence

Another way to consider the
problem: median string

» Just phrased a different way

- Given a set of t sequences, each of length n

* Find the string V of length k that minimized the Hamming
distance between V and one k-mer from each sequence

« Hamming distance is just the number of different
positions

Another way to consider the
problem: median string

» Just phrased a different way

- Given a set of t sequences, each of length n

* Find the string V of length k that minimized the Hamming
distance between V and one k-mer from each sequence

« Hamming distance is just the number of different
positions

« How many possibilities for V?

Another way to consider the
problem: median string

» Just phrased a different way

- Given a set of t sequences, each of length n

* Find the string V of length k that minimized the Hamming
distance between V and one k-mer from each sequence

« Hamming distance is just the number of different
positions

« How many possibilities for V?
_ 4F

Median string search tree
representation

Median string search tree
representation

 Each vertex represents a base at a certain
position in the median string

Median string search tree
representation

 Each vertex represents a base at a certain
position in the median string

 Each level (except the root) corresponds to a
median string position (1st level Is position 1, etc.)

Median string search tree
representation

 Each vertex represents a base at a certain
position in the median string

 Each level (except the root) corresponds to a
median string position (1st level Is position 1, etc.)

» 4 children per vertex (one for each possible next
base in the median string

Median string search tree
representation

 Each vertex represents a base at a certain
position in the median string

 Each level (except the root) corresponds to a
median string position (1st level Is position 1, etc.)

» 4 children per vertex (one for each possible next
base in the median string

» | eaf vertices are complete median strings

Median string search tree brute
force solution

* Brute force algorithm:

Median string search tree brute
force solution

* Brute force algorithm:

- For each leaf, check for the best-scoring match in
each sequence individually

Median string search tree brute
force solution

* Brute force algorithm:

- For each leaf, check for the best-scoring match in
each sequence individually

. O(4"nt)

Median string search tree brute
force solution

* Brute force algorithm:

- For each leaf, check for the best-scoring match in
each sequence individually

. O(4"nt)

« Can we use branch-and-bound again?

Median string search tree branch-
and-bound improvement

Median string search tree branch-
and-bound improvement

 What can we do while checking scores for a
candidate median string?

Median string search tree branch-
and-bound improvement

 What can we do while checking scores for a
candidate median string?

- If we've found the smallest distance match
for a sequence, what does that tell us about
the best total score for the candidate?

Median string search tree branch-
and-bound improvement

 What can we do while checking scores for a
candidate median string?

- If we've found the smallest distance match
for a sequence, what does that tell us about
the best total score for the candidate?

- In general, how does the score change as we
look at more sequences?

Median string search tree branch-
and-bound improvement

 What can we do while checking scores for a
candidate median string?

- If we've found the smallest distance match
for a sequence, what does that tell us about
the best total score for the candidate?

- In general, how does the score change as we
look at more sequences?

- As soon as the current score for the
candidate Is greater than the best (lowest)
score seen, move on to the next candidate

Branch-and-bound methods can
help In practice, but don't actually
Improve the worst-case time

Greedy motif search

Greedy motif search

» Scan each sequence only once

Greedy motif search

» Scan each sequence only once

- Find the best k-mer pair match between two
sequences

Greedy motif search

» Scan each sequence only once

- Find the best k-mer pair match between two
sequences

- Add on the best-matching k-mer from each other
sequence one at a time

Greedy motif search

» Scan each sequence only once

- Find the best k-mer pair match between two
sequences

- Add on the best-matching k-mer from each other
sequence one at a time

« CONSENSUS

Greedy motif search

» Scan each sequence only once

- Find the best k-mer pair match between two
sequences

- Add on the best-matching k-mer from each other
sequence one at a time

« CONSENSUS

- Uses a greedy search as described except it stores
m k-mers at each step

Greedy motif search

» Scan each sequence only once

- Find the best k-mer pair match between two
sequences

- Add on the best-matching k-mer from each other
sequence one at a time

« CONSENSUS

- Uses a greedy search as described except it stores
m k-mers at each step

* Less likely to miss better ones

The WEEDER algorithm (2014)

» Specifically looking for transcription factor (TF)
binding sites

* Uses a range of motif sizes similar to observed
TF binding sites

* Allows a specified number of differences
(mutations) d

* Uses a 'mismatched' suffix tree to search
sequences for candidate motif occurrences

Mismatched suffix tree

Root

[A9] [cfo] [¢]o

o B 0]

A0 [s]o] [c]o]

[A]0]
[o]

(a) PO

Mismatched suffix tree

Root

[A9] [cfo] [¢]o

aofcn

Al0

A0 [s]o] [c]o]

[clo] [a]g]

(a) PO

clo

Root

> A[0 P C[1}»G]|1]

clo] [6]o]

[clo] []9]

(b) A=A

clo

Mismatched suffix tree

Root O | o Root 0| o Root
M) [0 [Ga | A| AR | A bl
o B 0] T [|| el
o o] [A0 o) [o [efo] [clo
o) g o] (50
o G oo

(a) P70 (b) P=A (c) P~=AA

Mismatched suffix tree

Root

[A9] [cfo] [¢]o

A0 [s]o] [c]o]

[clo] [a]g]

A|O
Rl

AL [o2] [cf2]
A0
clo

(d) P7AAA

Root

Root

——>A|0]p{C

1}-»{G|1]

P\
> C| 1G] 1—>(A

—_

6]0] [co]

0| |A]0]

(c) P=AA

Mismatched suffix tree

Root

1{»G]|1]

[6]0] [c]o]

[clo] []9]

Cl1pp{G]1}—{a]1]

Root
[A9] [cfo] [¢]o
clo] [c]o] [a]o
A0 [s]o] [c]o]
[4]0]
clo
(a) P70
Root
alops{c|1]»6]1
q1]
AL [o2] [cf2]
Al9]
clo
(d) PFAAA

1]

[6]2] [c]2]

——{el1) [K(g]

(e) PFAAAC

clo

Root

——>A|Op{C| 1G]]

—_

P\
> C| 1G] 1—>(A

Al0] [c]o] [co]

(c) P=AA

Mismatched suffix tree

Root 0| o Root 0| Root
A0 0] [0 |A| S T—RbClE | A e —{afebielisc]
o B 0] T [|| el
A[0] [6]o] [c]o] Alo] [6]o] [clo] A0 [6]o] [c]o]
[clo] [a[o] [c[o] [a[o] clo] [alo
c]o] c]o] clo]
(a) PrO (b) A=A (c) PrmAA
Root o | e Root 0| & Root

Aloblclipf]t] | A] Alopfc|ifslc]1] | A | e T—{a]o}s{c[1}c]1]
Tl || PR] | 4| berEn
] [6Je] [cfe] | A oAl [eje] [ele] | C T [al2] [o]2] [c[u

clo] [alo) C el [A[g] (c[1] [alo]
clo clo clo

(d) P~AAA (e) P=AAAC (f) P ~AAC

Using valgrind to check for memory
bugs

Valgrind is a command line tool for profiling and
checking program memory use

If you compile with g++, then you just add the
'-g' flag when compiling

You can then run your program with valgrind
and it gives detailed memory usage Info

- Sometimes a bit too detailed

Valgrind example #1.:

<fstream=
<lostream=
std:

nt main(){

1nt num counts = 4;

int counts[num counts] = {1, 2, 3, 4};
(int 1 = 0; 1 <= num counts; ++1i){
cout<<counts[i]<<endl:

Valgrind example #1.:

<fstream=
<ilostream=
std:

main()}{

int num_counts = 4;

int counts[num counts] = {1, 2,
(int 1 = 8; i <= num_counts;
cout<<counts[1i]=<endl;

[2017-02-09 11:18:14 alex@Rincewind valgrind examples]S$ g++ test out of bounds.c
pp -0 test out of bounds.o
[2017-02-09 11:18:30 alex@Rincewind valgrind examples]$./test out of bounds.o

Valgrind example #1.:

[2017-02-09 11:18:34 alex@Rincewind valgrind examples]$ g++ -g test out of bound
s.cpp -o memcheck test out of bounds.o

[2017-02-09 11:19:16 alex@Rincewind valgrind examples]$ valgrind ./memcheck test
_out_of bounds.o

==14777== Memcheck, a memory error detector

==14777== Copyright (C) 2002-2015, and GNU GPL'd, by Julian Seward et al.
==14777== Using Valgrind-3.12.0.SVN and LibVEX; rerun with -h for copyright info
==14777== Command: ./memcheck test out of bounds.o

==14777== Conditional jump or move depends on uninitialised value(s)

==14777T== at Ox4F3F4BA: std::ostreambuf _iterator<char, std::char_traits<char=
> std::num_put<char, std::ostreambuf iterator<char, std::char_traits<char> > >:
: M insert_int<long>(std::ostreambuf iterator<char, std::char_traits<char> >, st

d::ios _base&, char, long) const (in fusr/lib/x86 64-linux-gnu/libstdc++.50.6.0.2

2)

==14777== by 8x4F3F6EC: std::num_put<char, std::ostreambuf iterator<char, std
: :char_traits<char> > >::do_put(std::ostreambuf iterator<char, std::char_traits<
char> >, std::i0os_base&, char, long) const (in fusr/lib/x86 64-1linux-gnu/libstdc
++.50.6.0.22)

==14777== by 8x4F4BF19: std::ostream& std::ostream:: M insert<long=(long) (in
fusr/1ib/x86_64-1linux-gnu/libstdc++.50.6.0.22)

==14777== by Ox188A50: main (test out of bounds.cpp:9)

Valgrind example #1.:

[2017-02-09 11:18:34 alex@Rincewind valgrind examples]$ g++ -g test out of bound
s.cpp -o memcheck test out of bounds.o

[2017-02-09 11:19:16 alex@Rincewind valgrind examples]$ valgrind ./memcheck test
_out_of bounds.o

==14777== Memcheck, a memory error detector

==14777== Copyright (C) 2002-2015, and GNU GPL'd, by Julian Seward et al.
==14777== Using Valgrind-3.12.0.SVN and LibVEX; rerun with -h for copyright info
==14777== Command: ./memcheck test out of bounds.o

at Ox4F3F4BA: std::ostreambuf _iterator<char, std::char_traits<char=

> std::num_put<char, std::ostreambuf iterator<char, std::char_traits<char> > >:
insert_int<long>(std::ostreambuf iterator<char, std::char_traits<char> >, st
Los_base&, char, long) const (in fusr/lib/x86 64-1linux-gnu/libstdc++.50.6.0.2

by 8x4F3F6EC: std::num_put<char, std::ostreambuf iterator<char, std
: :char_traits<char> > >::do_put(std::ostreambuf iterator<char, std::char_traits<
char> >, std::i0s_base&, char, long) const (in /fusr/lib/x86 64-1linux-gnu/libstdc
++.50.6.0.22)
==14777== by 8x4F4BF19: std::ostream& std::ostream:: M insert<long=(long) (in
fusr/1ib/x86_64-1linux-gnu/libstdc++.50.6.0.22)
==14777== by Ox188A50: main (test out of bounds.cpp:9)

Valgrind example #1.:

[2017-02-09 11:18:34 alex@Rincewind valgrind examples]$ g++ -g test out of bound
s.cpp -o memcheck test out of bounds.o

[2017-02-09 11:19:16 alex@Rincewind valgrind examples]$ valgrind ./memcheck test
_out_of bounds.o

==14777== Memcheck, a memory error detector

==14777== Copyright (C) 2002-2015, and GNU GPL'd, by Julian Seward et al.
==14777== Using Valgrind-3.12.0.SVN and LibVEX; rerun with -h for copyright info
==14777== Command: ./memcheck test out of bounds.o

at Ox4F3F4BA: std::ostreambuf _iterator<char, std::char_traits<char=

> std::num_put<char, std::ostreambuf iterator<char, std::char_traits<char> > >:
insert_int<long>(std::ostreambuf iterator<char, std::char_traits<char> >, st
Los_base&, char, long) const (in fusr/lib/x86 64-1linux-gnu/libstdc++.50.6.0.2

by 8x4F3F6EC: std::num_put<char, std::ostreambuf iterator<char, std
: :char_traits<char> > >::do_put(std::ostreambuf iterator<char, std::char_traits<
char> >, std::i0s_base&, char, long) const (in /fusr/lib/x86 64-1linux-gnu/libstdc
++.50.6.0.22)
==14777== by 8x4F4BF19: std::ostream& std::ostream:: M insert<long=(long) (in
fusr/1ib/x86 _64-lipux-gnu/libstdc++.50.6.0.22)
==14777==

Valgrind example #2:

<fstream-
<lostream=
std;

int main(){

int* num counts int(4);

1nt* counts = int[*num counts];
(int 1 = B; 1 =< *pnum counts: ++1){
counts[1i] = 1;

Valgrind example #2:

int main(){
int* num counts int(4);
int* counts = int[*num counts];
J: 1 =« *num counts: ++1J{

]
I.J.|1-J.=-:

counts[1i] =

[2017-02-09 11:19:24 alex@Rincewind valgrinad examples]$ g++ test no delete.cpp -
o test no delete.o
[2017 - 92-09 11:20:11 alex@Rincewind valgrind examples]$./test no delete.o

Valgrind example #2:

[2017-02-09 11:20:13 alex@Rincewind valgrind examples]$S g++ -g test _no _delete.cp
p -o memcheck test no delete.o

[2017-02-09 11:20:47 alex@Rincewind valgrind examples]S$ valgrind . /memcheck test
_no_delete.o

==14925==
==14925==
==14925==
==14925==
==14925==
==14925==
==14925==
==14925==
==14925==
==14925==
==14925==
==14925==
==14925==
==14925==
==14925==
==14925==
==14925==
==14925==
==14925==
==14925==

Memcheck, a memory error detector

Copyright (C) 2002-2015, and GNU GPL'd, by Julian Seward et al.

Using Valgrind-3.12.0.SVN and LibVEX; rerun with -h for copyright info
Command: ./memcheck test no delete.o

HEAP SUMMARY:
in use at exit: 20 bytes in 2 blocks
total heap usage: 3 allocs, 1 frees, 72,724 bytes allocated

LEAK SUMMARY :
definitely lost: 20 bytes in 2 blocks
indirectly lost: © bytes in ® blocks
possibly lost: ©® bytes in © blocks
still reachable: © bytes in ® blocks
suppressed: © bytes in ® blocks
Rerun with --leak-check=full to see details of leaked memory

For counts of detected and suppressed errors, rerun with: -v
ERROR SUMMARY: © errors from ® contexts (suppressed: @ from @)

Valgrind example #2:

[2017-82-09 11:20:13 alex@Rincewind valgrind examples]S g++ -g test no _delete.cp
p -o memcheck test no delete.o

[2017-02-09 11:20:47 alex@Rincewind valgrind examples]S$ valgrind . /memcheck test
_no_delete.o

==14925== Memcheck, a memory error detector

==14925== Copyright (C) 2002-2015, and GNU GPL'd, by Julian Seward et al.
==14925== Using Valgrind-3.12.0.5VN and LibVEX; rerun with -h for copyright info
==14925== Command: ./memcheck test no delete.o

==14925==

==14925==

==14925== HEAP SUMMARY:

==14925== in use at exit: 20 bytes in 2 blocks

==14925== total heap usage: 3 allocs, 1 frees, 72,724 bytes allocated
==14925==

==14925==

==14925== indirectly lost: © bytes in ® blocks

==14925== possibly lost: ©® bytes in © blocks

==14925== still reachable: © bytes in ® blocks

==14925== suppressed: © bytes in ® blocks

==14925== Rerun with --leak-check=full to see details of leaked memory
==14925==

==14925== For counts of detected and suppressed errors, rerun with: -v
==14925== ERROR SUMMARY: ® errors from ® contexts (suppressed: ® from 0)

Valgrind example #2:

[2017-82-09 11:20:13 alex@Rincewind valgrind examples]S g++ -g test no _delete.cp
p -o memcheck test no delete.o

[2017-02-09 11:20:47 alex@Rincewind valgrind examples]S$ valgrind . /memcheck test
_no_delete.o

==14925== Memcheck, a memory error detector

==14925== Copyright (C) 2002-2015, and GNU GPL'd, by Julian Seward et al.
==14925== Using Valgrind-3.12.0.5VN and LibVEX; rerun with -h for copyright info
==14925== Command: ./memcheck test no delete.o

==14925==

==14925==

==14925== HEAP SUMMARY:

==14925== in use at exit: 20 bytes in 2 blocks

==14925== total heap usage: 3 allocs, 1 frees, 72,724 bytes allocated
==14925==

==14925==

==14925==

==14925== indirectly lost: © bytes in ® blocks

==14925== possibly lost: ©® bytes in © blocks

==14925== still reachable: © bytes in ® blocks

==14925== suppressed: © bytes in ® blocks

==14925==

==14925==

==14925== For counts of detected and suppressed errors, rerun with: -v

==14925== ERROR SUMMARY: ® errors from ® contexts (suppressed: ® from 0)

Valgrind example #2:

[2017-02-09 11:22:04 alex@Rincewind valgrind examples]$ valgrind --leak-check=fu
11 ./memcheck test no delete.o

==15519== Memcheck, a memory error detector

==15519== Copyright (C) 2002-2015, and GNU GPL'd, by Julian Sewara et al.
==15519== Using Valgrind-3.12.0.5VN ana LibVEX; rerun with -h for copyright info
==15519== Command: ./memcheck test no delete.o

==15519==

==15519==

==15519== HEAP SUMMARY :

==15519== in use at exit: 20 bytes in 2 blocks

==15519== total heap usage: 3 allocs, 1 frees, 72,724 bytes allocated
==15519==

==15519== 4 bytes in 1 blocks are definitely lost in loss record 1 of 2

==15519== at Ox4C2D1AF: operator new(unsigned long) (in fusr/lib/valgrind/vgp
reload memcheck-amd64-1inux.so0)

==15519== by 6x1088A1: main (test no delete.cpp:6)

==15519==

==15519== 16 bytes in 1 blocks are definitely lost in loss record 2 of 2
==15519== at Ox4C2D8CF: operator new[](unsigned long) (in fusr/lib/valgrind/v
gpreload memcheck-amd64-1inux.so)

==15519== by 0x1088CE: main (test no delete.cpp:7)

==15519==

==15519== LEAK SUMMARY:

==15519== definitely lost: 20 bytes in 2 blocks

==15519== indirectly lost: © bytes in ® blocks

==15519== possibly lost: @ bytes in ® blocks

==15519== still reachable: © bytes in ® blocks

==15519== suppressed: @ bytes in ® blocks

==15519==

==15519== For counts of detected and suppressed errors, rerun with: -v

==15519== ERROR SUMMARY: 2 errors from 2 contexts (suppressed: 0 from 0)

Valgrind example #2:

[2017-02-09 11:22:04 alex@Rincewind valgrind examples]$ valgrind --leak-check=fu
11 ./memcheck test no delete.o

==15519== Memcheck, a memory error detector

==15519== Copyright (C) 2002-2015, and GNU GPL'd, by Julian Seward et al.
==15519== Using Valgrind-3.12.0.SVN and LibVEX; rerun with -h for copyright info
==15519== Command: ./memcheck test no delete.o

==15519==

==15519==

==15519== HEAP SUMMARY:

==15519==

==15519==

==15519==

==15519== 4 bytes in 1 blocks are definitely lost in loss record 1 of 2
==15519== at 0x4C2D1AF: operator new(unsigned long) (in fusr/lib/valgrind/vgp
reload memcheck-amd64-1inux.so0)

==15519== by ©x1088A1: main (test no _delete.cpp:6)

==15519==

==15519== 16 bytes in 1 blocks are definitely lost in loss record 2 of 2
==15519== at 0x4C2D8CF: operator new[](unsigned long) (in /usr/lib/valgrind/v
gpreload memcheck-amd64-1inux.so)

==15519== by 8x1088CE: main (test no delete.cpp:7)

==15519==

==15519== LEAK SUMMARY:

==15519== definitely lost: 20 bytes in 2 blocks

==15519== indirectly lost: © bytes in ® blocks

==15519== possibly lost: @ bytes in ® blocks

==15519== still reachable: © bytes in ® blocks

==15519== suppressed: @ bytes in ® blocks

==15519==

==15519== For counts of detected and suppressed errors, rerun with: -v

==15519== ERROR SUMMARY: 2 errors from 2 contexts (suppressed: @ from 8)

Valgrind example #2:

[2017-02-09 11:22:04 alex@Rincewind valgrind examples]$ valgrind --leak-check=fu
11 ./memcheck test no delete.o

==15519== Memcheck, a memory error detector

==15519== Copyright (C) 2002-2015, and GNU GPL'd, by Julian Seward et al.
==15519== Using Valgrind-3.12.0.SVN and LibVEX; rerun with -h for copyright info
==15519== Command: ./memcheck test no delete.o

==15519==

==15519==

==15519== HEAP SUMMARY:

==15519== at 0x4C2D1AF: operator new(unsigned long) (in fusr/lib/valgrind/vgp
reload memcheck-amd64-1inux.so0)

==15519== by ©x1088A1: main (test no _delete.cpp:6)

==15519==

==15519== 16 bytes in 1 blocks are definitely lost in loss record 2 of 2
==15519== at 0x4C2D8CF: operator new[](unsigned long) (in /usr/lib/valgrind/v
gpreload memcheck-amd64-1inux.so)

==15519== by 8x1088CE: main (test no delete.cpp:7)

==15519==

==15519== LEAK SUMMARY:

==15519== definitely lost: 20 bytes in 2 blocks

==15519== indirectly lost: © bytes in ® blocks

==15519== possibly lost: @ bytes in ® blocks

==15519== still reachable: © bytes in ® blocks

==15519== suppressed: @ bytes in ® blocks

==15519==

==15519== For counts of detected and suppressed errors, rerun with: -v

==15519== ERROR SUMMARY: 2 errors from 2 contexts (suppressed: @ from 8)

Valgrind example #2:

[2017-02-09 11:22:04 alex@Rincewind valgrind examples]$ valgrind --leak-check=fu
11 ./memcheck test no delete.o

==15519== Memcheck, a memory error detector

==15519== Copyright (C) 2002-2015, and GNU GPL'd, by Julian Seward et al.
==15519== Using Valgrind-3.12.0.SVN and LibVEX; rerun with -h for copyright info
==15519== Command: ./memcheck test no delete.o

==15519==

==15519==

==15519== HEAP SUMMARY:

==15519== at 0x4C2D1AF: operator new(unsigned long) (in fusr/lib/valgrind/vgp
reload memcheck-amd64-1inux.so0)

—-15515-= by 0x1088A1: main (test_no_delete.cpp:6)

==15519==

==15519== 16 bytes in 1 blocks are definitely lost in loss record 2 of 2
==15519== at 0x4C2D8CF: operator new[](unsigned long) (in /usr/lib/valgrind/v
gpreload memcheck-amd64-1inux.so)

==15519== by 8x1088CE: main (test no delete.cpp:7)

==15519==

==15519== LEAK SUMMARY:

==15519== definitely lost: 20 bytes in 2 blocks

==15519== indirectly lost: © bytes in ® blocks

==15519== possibly lost: @ bytes in ® blocks

==15519== still reachable: © bytes in ® blocks

==15519== suppressed: @ bytes in ® blocks

==15519==

==15519== For counts of detected and suppressed errors, rerun with: -v

==15519== ERROR SUMMARY: 2 errors from 2 contexts (suppressed: @ from 8)

Valgrind example #2:

[2017-02-09 11:22:04 alex@Rincewind valgrind examples]$ valgrind --leak-check=fu
11 ./memcheck test no delete.o

==15519== Memcheck, a memory error detector

==15519== Copyright (C) 2002-2015, and GNU GPL'd, by Julian Seward et al.
==15519== Using Valgrind-3.12.0.SVN and LibVEX; rerun with -h for copyright info
==15519== Command: ./memcheck test no delete.o

==15519==

==15519==

==15519== HEAP SUMMARY:

==15519== at 0x4C2D1AF: operator new(unsigned long) (in fusr/lib/valgrind/vgp
reload memcheck-amd64-1inux.so0)

--15519== by @x1088A1: main (test_no_delete.cpp:6)

==15519== at 0x4C2D8CF: operator new[](unsigned long) (in /usr/lib/valgrind/v
gpreload memcheck-amd64-1inux.so)

==15519== by 8x1088CE: main (test no delete.cpp:7)

==15519==

==15519== LEAK SUMMARY:

==15519== definitely lost: 20 bytes in 2 blocks

==15519== indirectly lost: © bytes in ® blocks

==15519== possibly lost: @ bytes in ® blocks

==15519== still reachable: © bytes in ® blocks

==15519== suppressed: @ bytes in ® blocks

==15519==

==15519== For counts of detected and suppressed errors, rerun with: -v
==15519== ERROR SUMMARY: 2 errors from 2 contexts (suppressed: @ from 8)

Valgrind example #2:

[2017-02-09 11:22:04 alex@Rincewind valgrind examples]$ valgrind --leak-check=fu
11 ./memcheck test no delete.o

==15519== Memcheck, a memory error detector

==15519== Copyright (C) 2002-2015, and GNU GPL'd, by Julian Seward et al.
==15519== Using Valgrind-3.12.0.SVN and LibVEX; rerun with -h for copyright info
==15519== Command: ./memcheck test no delete.o

==15519==

==15519==

==15519== HEAP SUMMARY:

==15519== at 0x4C2D1AF: operator new(unsigned long) (in fusr/lib/valgrind/vgp
reload memcheck-amd64-1inux.so0)

--15519== by @x1088A1: main (test_no_delete.cpp:6)

==15519== at 0x4C2D8CF: operator new[](unsigned long) (in /usr/lib/valgrind/v
gpreload memcheck-amd64-1inux.so)

==15519== by 0x1088CE: main (test_no_delete.cpp:7)

==15519==

==15519== LEAK SUMMARY:

==15519== definitely lost: 20 bytes in 2 blocks

==15519== indirectly lost: © bytes in ® blocks

==15519== possibly lost: @ bytes in ® blocks

==15519== still reachable: © bytes in ® blocks

==15519== suppressed: @ bytes in ® blocks

==15519==

==15519== For counts of detected and suppressed errors, rerun with: -v
==15519== ERROR SUMMARY: 2 errors from 2 contexts (suppressed: @ from 8)

Valgrind example #3:

<fstream=
<lostream=
std:

int main(){
int* num counts int(4);

1nt* counts = int[*num counts]:;
(zpnt 1 = B; 1 < *num counts:; ++1){
counts[1i] = 1;

num counts;
counts;

Valgrind example #3:

int* num counts int(4);
int* counts = l'f[‘num 1DUﬂt5]

(zpt 1 = B; 1 *num counts; ++1J{
counts[1] = 1;

num counts;
counts;

[2017-02-09 11:20:53 alex@Rincewind valgrind examples]$S g++ test wrong delete.cp
p -0 test wrong delete.o

[2017-82-09 11:21:27 alex@Rincewind valgrind examples]$S

jtest_wrong_delete.o

Valgrind example #3:

[2017-82-09 11:21:29 alex@Rincewind valgrind examples]$ g++ -g test wrong delete
.cpp -0 memcheck test wrong delete.o

[2017-02-09 11:21:59 alex@Rincewind valgrind examples]$ valgrind ./memcheck test
_Wwrong_delete.o

==15095== Memcheck, a memory error detector

==15095== Copyright (C) 2002-2015, and GNU GPL'd, by Julian Seward et al.
==15095== Using Valgrind-3.12.0.5VN and LibVEX; rerun with -h for copyright info
==15095== Command: ./memcheck test wrong delete.o

==15095==

==15095== Mismatched free() / delete [delete []

==15095== at Ox4C2E76B: operator delete[](void*) (in Jusr/lib/valgrind/vgprel
oad memcheck-amd64-1inux.so0)

==15095== by ©x1089BD: main (test wrong delete.cpp:11)

==15095== Address 0x5ab9c80 is ® bytes inside a block of size 4 alloc'd
==15095== at Ox4C2D1AF: operator new(unsigned long) (in fusr/lib/valgrind/vgp
reload memcheck-amdé4-1inux.so)

==15895== by 0x108941: main (test wrong delete.cpp:6)

==15095==

==15095== Mismatched free() / delete [delete []

==15895== at Ox4C2E26B: operator delete(void*) (in Jfusr/lib/valgrind/vgpreloa
d memcheck-amd64-1inux.so)

==15095== by 0x1089CE: main (test wrong delete.cpp:12)

==15095== Address 0x5ab9cd® is ® bytes inside a block of size 16 alloc'd
==15095== at @x4C2DBCF: operator new[](unsigned long) (in fusr/lib/valgrind/v
gpreload memcheck-amd64-1inux.so)

==15095== by 0x10896E: main (test wrong delete.cpp:7)

==15095==

==15095==

==15095== HEAP SUMMARY:

==15895== in use at exit: ® bytes in ©® blocks

==15895== total heap usage: 3 allocs, 3 frees, 72,724 bytes allocated
==15095==

==15095== All heap blocks were freed -- no leaks are possible

==15095==

==15095== For counts of detected and suppressed errors, rerun with: -v

==15095== ERROR SUMMARY: 2 errors from 2 contexts (suppressed: @ from @)

Valgrind example #3:

[2017-82-09 11:21:29 alex@Rincewind valgrind examples]$ g++ -g test wrong delete
.cpp -0 memcheck test wrong delete.o

[2017-02-09 11:21:59 alex@Rincewind valgrind examples]$ valgrind ./memcheck test
_Wwrong_delete.o

==15095== Memcheck, a memory error detector

==15095== Copyright (C) 2002-2015, and GNU GPL'd, by Julian Seward et al.
==15095== Using Valgrind-3.12.0.5VN and LibVEX; rerun with -h for copyright info
==15095== Command: ./memcheck test wrong delete.o

==15095== at Ox4C2E76B: operator delete[](void*) (in Jusr/lib/valgrind/vgprel
oad memcheck-amd64-1inux.so0)

==15095== by ©x1089BD: main (test wrong delete.cpp:11)

==15095== Address 0x5ab9c80 is ® bytes inside a block of size 4 alloc'd
==15095== at Ox4C2D1AF: operator new(unsigned long) (in fusr/lib/valgrind/vgp
reload memcheck-amdé4-1inux.so)

==15895== by 0x108941: main (test wrong delete.cpp:6)

==15095==

==15095== Mismatched free() / delete [delete []

==15895== at Ox4C2E26B: operator delete(void*) (in Jfusr/lib/valgrind/vgpreloa
d memcheck-amd64-1inux.so)

==15095== by 0x1089CE: main (test wrong delete.cpp:12)

==15095== Address 0x5ab9cd® is ® bytes inside a block of size 16 alloc'd
==15095== at @x4C2DBCF: operator new[](unsigned long) (in fusr/lib/valgrind/v
gpreload memcheck-amd64-1inux.so)

==15095== by 0x10896E: main (test wrong delete.cpp:7)

==15095==

==15095==

==15095== HEAP SUMMARY:

==15895== in use at exit: ® bytes in ©® blocks

==15895== total heap usage: 3 allocs, 3 frees, 72,724 bytes allocated
==15095==

==15095== All heap blocks were freed -- no leaks are possible

==15095==

==15095== For counts of detected and suppressed errors, rerun with: -v

==15095== ERROR SUMMARY: 2 errors from 2 contexts (suppressed: @ from @)

Valgrind example #3:

[2017-02-09 11:21:29 alex@Rincewind valgrind examples]$ g++ -g test wrong delete
.cpp -0 memcheck test wrong delete.o

[2017-02-09 11:21:59 alex@Rincewind valgrind examples]$ valgrind ./memcheck test
wrong_delete.o

==15095== Memcheck, a memory error detector

==15095== Copyright (C) 2002-2015, and GNU GPL'd, by Julian Seward et al.
==15095== Using Valgrind-3.12.0.5VN and LibVEX; rerun with -h for copyright info
==15095== Command: ./memcheck test wrong delete.o

==15095== at Ox4C2E76B: operator delete[](void*) (in /fusr/lib/valgrind/vgprel
oad memcheck-amd64-1inux.so0)

==15095== by ©x1089BD: main (test wrong delete.cpp:11)

==15095== Address 0x5ab9c80 is ® bytes inside a block of size 4 alloc'd
==15095== at 0x4C2D1AF: operator new(unsigned long) (in fusr/lib/valgrind/vgp
reload memcheck-amdé4-1linux.so)

==15895==

==15895==

==15095== Mismatched free() / delete / delete []

==15095== at Ox4C2E26B: operator delete(void*) (in /fusr/lib/valgrind/vgpreloa
d memcheck-amd64-1inux.so)

==15095== by ©x1089CE: main (test wrong_delete.cpp:12)

==15095== Address 0x5ab9cd® is ® bytes inside a block of size 16 alloc'd
==15095== at 0x4C2D8CF: operator new[](unsigned long) (in /usr/lib/valgrind/v
gpreload memcheck-amd64-1inux.so)

==15095== by ©x10896E: main (test wrong delete.cpp:7)

==15895==

==15895==

==15095== HEAP SUMMARY:

==15895== in use at exit: ® bytes in ©® blocks

==15895== total heap usage: 3 allocs, 3 frees, 72,724 bytes allocated

== EEEE

==15095== All heap blocks were freed -- no leaks are possible

==15095==

==15095== For counts of detected and suppressed errors, rerun with: -v

==15095== ERROR SUMMARY: 2 errors from 2 contexts (suppressed: @ from @)

Valgrind example #3:

[2017-02-09 11:21:29 alex@Rincewind valgrind examples]$ g++ -g test wrong delete
.cpp -0 memcheck test wrong delete.o

[2017-02-09 11:21:59 alex@Rincewind valgrind examples]$ valgrind ./memcheck test
wrong_delete.o

==15095== Memcheck, a memory error detector

==15095== Copyright (C) 2002-2015, and GNU GPL'd, by Julian Seward et al.
==15095== Using Valgrind-3.12.0.5VN and LibVEX; rerun with -h for copyright info
==15095== Command: ./memcheck test wrong delete.o

==15095== at Ox4C2E76B: operator delete[](void*) (in /fusr/lib/valgrind/vgprel
oad memcheck-amd64-1inux.so0)

==15095== by ©x1089BD: main (test wrong delete.cpp:11)

==15095== Address 0x5ab9c80 is ® bytes inside a block of size 4 alloc'd
==15095== at 0x4C2D1AF: operator new(unsigned long) (in fusr/lib/valgrind/vgp
reload memcheck-amdé4-1linux.so)

==15895==

==15895==

==15095==

==15095== at Ox4C2E26B: operator delete(void*) (in /fusr/lib/valgrind/vgpreloa
d memcheck-amd64-1inux.so)

==15095== by ©x1089CE: main (test wrong_delete.cpp:12)

==15095== Address 0x5ab9cd® is ® bytes inside a block of size 16 alloc'd
==15095== at 0x4C2D8CF: operator new[](unsigned long) (in /usr/lib/valgrind/v
gpreload memcheck-amd64-1inux.so)

==15095== by ©x10896E: main (test wrong delete.cpp:7)

==15895==

==15895==

==15095== HEAP SUMMARY:

==15895== in use at exit: ® bytes in ©® blocks

==15895== total heap usage: 3 allocs, 3 frees, 72,724 bytes allocated

== EEEE

==15095== All heap blocks were freed -- no leaks are possible

==15095==

==15095== For counts of detected and suppressed errors, rerun with: -v

==15095== ERROR SUMMARY: 2 errors from 2 contexts (suppressed: @ from @)

Valgrind example #3:

[2017-02-09 11:21:29 alex@Rincewind valgrind examples]$ g++ -g test wrong delete
.cpp -0 memcheck test wrong delete.o

[2017-02-09 11:21:59 alex@Rincewind valgrind examples]$ valgrind ./memcheck test
wrong_delete.o

==15095== Memcheck, a memory error detector

==15095== Copyright (C) 2002-2015, and GNU GPL'd, by Julian Seward et al.
==15095== Using Valgrind-3.12.0.5VN and LibVEX; rerun with -h for copyright info
==15095== Command: ./memcheck test wrong delete.o

==15095== at Ox4C2E76B: operator delete[](void*) (in /fusr/lib/valgrind/vgprel
oad memcheck-amd64-1inux.so0)

==15095== by ©x1089BD: main (test wrong delete.cpp:11)

==15095== Address 0x5ab9c80 is ® bytes inside a block of size 4 alloc'd
==15095== at 0x4C2D1AF: operator new(unsigned long) (in fusr/lib/valgrind/vgp
reload memcheck-amdé4-1linux.so)

==15895==

==15895==

==15095==

==15095== at Ox4C2E26B: operator delete(void*) (in /fusr/lib/valgrind/vgpreloa
d memcheck-amd64-1inux.so)

==15095== by ©x1089CE: main (test wrong_delete.cpp:12)

==15095== Address 0x5ab9cd® is ® bytes inside a block of size 16 alloc'd
==15095== at 0x4C2D8CF: operator new[](unsigned long) (in /usr/lib/valgrind/v
gpreload memcheck-amd64-1inux.so)

==15095==

==15895==

==15895==

==15095== HEAP SUMMARY:

==15895== in use at exit: ® bytes in ©® blocks

==15895== total heap usage: 3 allocs, 3 frees, 72,724 bytes allocated

== EEEE

==15095== All heap blocks were freed -- no leaks are possible

==15095==

==15095== For counts of detected and suppressed errors, rerun with: -v

==15095== ERROR SUMMARY: 2 errors from 2 contexts (suppressed: @ from @)

	Slide 1
	Slide 2
	page3 (1)
	page3 (2)
	page3 (3)
	page3 (4)
	page3 (5)
	page3 (6)
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	page11 (1)
	page11 (2)
	page11 (3)
	page11 (4)
	page11 (5)
	page11 (6)
	page11 (7)
	page12 (1)
	page12 (2)
	page12 (3)
	page12 (4)
	page12 (5)
	page12 (6)
	page12 (7)
	page12 (8)
	page12 (9)
	page12 (10)
	page13 (1)
	page13 (2)
	page13 (3)
	page13 (4)
	page14 (1)
	page14 (2)
	page14 (3)
	page14 (4)
	page14 (5)
	page14 (6)
	page15 (1)
	page15 (2)
	page15 (3)
	page15 (4)
	page15 (5)
	page15 (6)
	page15 (7)
	page15 (8)
	page15 (9)
	page16 (1)
	page16 (2)
	page16 (3)
	page16 (4)
	page16 (5)
	page16 (6)
	page16 (7)
	page17 (1)
	page17 (2)
	page17 (3)
	page17 (4)
	page17 (5)
	page18 (1)
	page18 (2)
	page18 (3)
	page18 (4)
	page19 (1)
	page19 (2)
	page19 (3)
	page19 (4)
	page19 (5)
	Slide 73
	page21 (1)
	page21 (2)
	page21 (3)
	page21 (4)
	page21 (5)
	page21 (6)
	page21 (7)
	Slide 81
	page23 (1)
	page23 (2)
	page23 (3)
	page23 (4)
	page23 (5)
	page23 (6)
	Slide 88
	page25 (1)
	page25 (2)
	page26 (1)
	page26 (2)
	page26 (3)
	page27 (1)
	page27 (2)
	page28 (1)
	page28 (2)
	page28 (3)
	page29 (1)
	page29 (2)
	page29 (3)
	page29 (4)
	page29 (5)
	page29 (6)
	page30 (1)
	page30 (2)
	page31 (1)
	page31 (2)
	page31 (3)
	page31 (4)
	page31 (5)

