Discussion Section 6

« HW 5 tips and questions?

* Motif-finding algorithms

* If time: using valgrind to find memory leaks/out
of bounds bugs



HW 5 output

* What you report:
- Nucleotide histogram
- Background frequency
— Count matrix (-10 to 10 nucleotides)
- Frequency matrix (-10 to 10 nucleotides)
- Weight matrix (-10 to 10 nucleotides)
- Maximum score
- Score histogram for CDS
— Score histogram for all positions
- List of non-CDS positions with score >= 10
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HW 5 tips

Looking only for 'CDS' features
‘complement’ indicates the reverse complement
'ORIGIN' section contains the actual sequence

Positions downstream of the translation start site
could be noncontiguous

- ]0in(1000..1008,1200..1500)

Precision matters! (use doubles in C++)



Watch out for multi-line joins

CDS join(10183..10943,11138..11246,11408..11525,11697..11815,
12006..12056,12284..12445,12661..12792,12989..13135,
13293..13400,13597..13661,13848..13957,14104..14208,
14364..14440,14606..14773,14909..15013)
/locus_tag="PTSG_00005"

/codon_start=1
/product="hypothetical protein"
/protein_id="EGD71989.1"

/db_xref="GIl:326426419"
/translation="MMMMMMMMRPCCSLPSTWWLVVVVLAAACCAATPTAAAVPAAAP

AEAADPSVVNVGQFVVSLDEDGVLSAVRNPAQMPNPHLAWHSTGEILEVAASKMYLHG...“



Weight matrix definition

 log,(frequency of base In start site/background
frequency of base)

* use -99 If frequency Is zero (alternative to
pseudocounts)



Score histogram for CDS and all sites

* Bins labeled with integer values

- Round scores down to determine
the bin

 Print all bins with at least one
count

 Put all scores less than -50 into
one bin

Score Histogram All;
-5101880
-4 76413
-3 54704
-2 38081
-1 27202
0 21440
118671

2 18825

3 19072
418675
517308
6 14429

7 10595

8 6915

9 3886

10 1850
11 699

12 225

13 46

14 4

[t-50 6132782



HW 5 questions?



More general motif-finding problem

Sequence 1 G TACTATCCAGCTATCGG
Sequence 2 TAGGGCAACTTTTCAGTZC
Sequence 3 ACGTCATATGGATCTCGG
Sequence 4 TTCAAAGCAACCCAAATA
Sequence 5 C T TGGAACTGGTTATCAG
Sequence 6 ACGATGCCATTACCATAA

Sequence 7/ AAAGATCAGTATGGCACT



More general motif-finding problem

e Basic idea:

- Given a set of t sequences of length n

e FIind a set of k-mers with maximum consensus score

 One k-mer from each sequence



More general motif-finding problem

Sequence 1 G TACTATCCAGCTATCGG
Sequence 2 TAGGGCAACTTTTCAGTTC
Sequence 3 ACGTCATATGGATCTCG®G
Sequence 4 TTCAAAGCAACCCAAATA
Sequence 5 C T TGGAACTGGTTATCAG
Sequence 6 ACGATGCCATTACCATAA

Sequence 7/ AAAGATCAGTATGGCACT



More general motif-finding problem

Sequence 1 AT CCAGCT
Sequence 2 GGGCAACT
Sequence 3 AT GGATCT
Sequence 4 AAGCAACC
Sequence 5 TTGGAACT
Sequence 6 AT GCCATT

Sequence 7 ATGGCACT



More general motif-finding problem

Sequence
Sequence
Sequence
Sequence
Sequence
Sequence

Sequence

1ATCCA

2

3

G

A

G

T

G

C

A

A

G

C

T

A510055¢00



More general motif-finding problem

Sequence
Sequence
Sequence
Sequence
Sequence
Sequence

Sequence

1ATCCA

2

3

G

A

G

T

G

C

A

A

G

C

T

— >
— U1

ol =

O NO)
O NO)
© Ui

= Ul
= ©
o ©



More general motif-finding problem
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More general motif-finding problem
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More general motif-finding problem

Sequence
Sequence
Sequence
Sequence
Sequence
Sequence
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More general motif-finding problem

Sequence
Sequence
Sequence
Sequence
Sequence
Sequence
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Consensus:
ATGCAACT

Score:
5+5+6+4+5+5+6+6
=42
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Motif search tree representation

Root

ACTACCA CTACCAG

Sequence 1
_ .
o000 00 00 00
Sequence 2
[ L L
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Motif search tree representation

Each vertex represents a motif start location

Each level (except the root) corresponds to a
sequence (t levels)

n — k + 1 children per vertex (possible motif
start locations in next sequence)

Leaf vertices are complete motif sets



Motif search tree brute force
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* Brute force algorithm:
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Motif search tree brute force
solution

* Brute force algorithm:
— Traverse the tree iIn some order

- At each leaf, calculate the score for the set of
starting positions

- Keep track of the best score seen
e O(knt)

« What could we do better?



Motif search tree branch-and-bound
Improvement

 Basic idea
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e Basic idea
- At each vertex, determine a bound on the score
- |f the bound is too low, don't use this branch

* More specifically

- Given the partial consensus for i sequences chosen

* The rest of the sequences can improve the score by at
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Motif search tree branch-and-bound
Improvement

e Basic idea
- At each vertex, determine a bound on the score
- |f the bound is too low, don't use this branch

* More specifically

- Given the partial consensus for i sequences chosen

* The rest of the sequences can improve the score by at
most (t - 1) X k
- When does this happen?  The rest match the partial consensus
- So If current score + (t - /) X k Is less than the best
score so far, don't bother checking
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Another way to consider the
problem: median string

» Just phrased a different way

- Given a set of t sequences, each of length n

* Find the string V of length k that minimized the Hamming
distance between V and one k-mer from each sequence

« Hamming distance is just the number of different
positions

« How many possibilities for V?
_ 4F
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Median string search tree
representation

 Each vertex represents a base at a certain
position in the median string

 Each level (except the root) corresponds to a
median string position (1st level Is position 1, etc.)

» 4 children per vertex (one for each possible next
base in the median string

» | eaf vertices are complete median strings
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Median string search tree brute
force solution

* Brute force algorithm:

- For each leaf, check for the best-scoring match in
each sequence individually

. O(4"nt)

« Can we use branch-and-bound again?



Median string search tree branch-
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Median string search tree branch-
and-bound improvement

 What can we do while checking scores for a
candidate median string?

- If we've found the smallest distance match
for a sequence, what does that tell us about
the best total score for the candidate?

- In general, how does the score change as we
look at more sequences?

- As soon as the current score for the
candidate Is greater than the best (lowest)
score seen, move on to the next candidate



Branch-and-bound methods can
help In practice, but don't actually
Improve the worst-case time
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Greedy motif search

» Scan each sequence only once



Greedy motif search

» Scan each sequence only once

- Find the best k-mer pair match between two
sequences



Greedy motif search

» Scan each sequence only once

- Find the best k-mer pair match between two
sequences

- Add on the best-matching k-mer from each other
sequence one at a time



Greedy motif search

» Scan each sequence only once

- Find the best k-mer pair match between two
sequences

- Add on the best-matching k-mer from each other
sequence one at a time

« CONSENSUS



Greedy motif search

» Scan each sequence only once

- Find the best k-mer pair match between two
sequences

- Add on the best-matching k-mer from each other
sequence one at a time

« CONSENSUS

- Uses a greedy search as described except it stores
m k-mers at each step



Greedy motif search

» Scan each sequence only once

- Find the best k-mer pair match between two
sequences

- Add on the best-matching k-mer from each other
sequence one at a time

« CONSENSUS

- Uses a greedy search as described except it stores
m k-mers at each step

* Less likely to miss better ones



The WEEDER algorithm (2014)

» Specifically looking for transcription factor (TF)
binding sites

* Uses a range of motif sizes similar to observed
TF binding sites

* Allows a specified number of differences
(mutations) d

* Uses a 'mismatched' suffix tree to search
sequences for candidate motif occurrences
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Mismatched suffix tree
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Mismatched suffix tree
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Mismatched suffix tree
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Using valgrind to check for memory
bugs

Valgrind is a command line tool for profiling and
checking program memory use

If you compile with g++, then you just add the
'-g' flag when compiling

You can then run your program with valgrind
and it gives detailed memory usage Info

- Sometimes a bit too detailed



Valgrind example #1.:

<fstream=
<lostream=
std:

nt main(){

1nt num counts = 4;

int counts[num counts] = {1, 2, 3, 4};
(int 1 = 0; 1 <= num counts; ++1i){
cout<<counts[i]<<endl:




Valgrind example #1.:

<fstream=
<ilostream=
std:

main()}{

int num_counts = 4;

int counts[num counts] = {1, 2,
(int 1 = 8; i <= num_counts;
cout<<counts[1i]=<endl;

[2017-02-09 11:18:14 alex@Rincewind valgrind examples]S$ g++ test out of bounds.c
pp -0 test out of bounds.o
[2017-02-09 11:18:30 alex@Rincewind valgrind examples]$ ./test out of bounds.o




Valgrind example #1.:

[2017-02-09 11:18:34 alex@Rincewind valgrind examples]$ g++ -g test out of bound
s.cpp -o memcheck test out of bounds.o

[2017-02-09 11:19:16 alex@Rincewind valgrind examples]$ valgrind ./memcheck test
_out_of bounds.o

==14777== Memcheck, a memory error detector

==14777== Copyright (C) 2002-2015, and GNU GPL'd, by Julian Seward et al.
==14777== Using Valgrind-3.12.0.SVN and LibVEX; rerun with -h for copyright info
==14777== Command: ./memcheck test out of bounds.o

==14777== Conditional jump or move depends on uninitialised value(s)

==14777T== at Ox4F3F4BA: std::ostreambuf _iterator<char, std::char_traits<char=
> std::num_put<char, std::ostreambuf iterator<char, std::char_traits<char> > >:
: M insert_int<long>(std::ostreambuf iterator<char, std::char_traits<char> >, st

d::ios _base&, char, long) const (in fusr/lib/x86 64-linux-gnu/libstdc++.50.6.0.2

2)

==14777== by 8x4F3F6EC: std::num_put<char, std::ostreambuf iterator<char, std
: :char_traits<char> > >::do_put(std::ostreambuf iterator<char, std::char_traits<
char> >, std::i0os_base&, char, long) const (in fusr/lib/x86 64-1linux-gnu/libstdc
++.50.6.0.22)

==14777== by 8x4F4BF19: std::ostream& std::ostream:: M insert<long=(long) (in
fusr/1ib/x86_64-1linux-gnu/libstdc++.50.6.0.22)

==14777== by Ox188A50: main (test out of bounds.cpp:9)




Valgrind example #1.:

[2017-02-09 11:18:34 alex@Rincewind valgrind examples]$ g++ -g test out of bound
s.cpp -o memcheck test out of bounds.o

[2017-02-09 11:19:16 alex@Rincewind valgrind examples]$ valgrind ./memcheck test
_out_of bounds.o

==14777== Memcheck, a memory error detector

==14777== Copyright (C) 2002-2015, and GNU GPL'd, by Julian Seward et al.
==14777== Using Valgrind-3.12.0.SVN and LibVEX; rerun with -h for copyright info
==14777== Command: ./memcheck test out of bounds.o

at Ox4F3F4BA: std::ostreambuf _iterator<char, std::char_traits<char=

> std::num_put<char, std::ostreambuf iterator<char, std::char_traits<char> > >:
insert_int<long>(std::ostreambuf iterator<char, std::char_traits<char> >, st
Los_base&, char, long) const (in fusr/lib/x86 64-1linux-gnu/libstdc++.50.6.0.2

by 8x4F3F6EC: std::num_put<char, std::ostreambuf iterator<char, std
: :char_traits<char> > >::do_put(std::ostreambuf iterator<char, std::char_traits<
char> >, std::i0s_base&, char, long) const (in /fusr/lib/x86 64-1linux-gnu/libstdc
++.50.6.0.22)
==14777== by 8x4F4BF19: std::ostream& std::ostream:: M insert<long=(long) (in
fusr/1ib/x86_64-1linux-gnu/libstdc++.50.6.0.22)
==14777== by Ox188A50: main (test out of bounds.cpp:9)




Valgrind example #1.:

[2017-02-09 11:18:34 alex@Rincewind valgrind examples]$ g++ -g test out of bound
s.cpp -o memcheck test out of bounds.o

[2017-02-09 11:19:16 alex@Rincewind valgrind examples]$ valgrind ./memcheck test
_out_of bounds.o

==14777== Memcheck, a memory error detector

==14777== Copyright (C) 2002-2015, and GNU GPL'd, by Julian Seward et al.
==14777== Using Valgrind-3.12.0.SVN and LibVEX; rerun with -h for copyright info
==14777== Command: ./memcheck test out of bounds.o

at Ox4F3F4BA: std::ostreambuf _iterator<char, std::char_traits<char=

> std::num_put<char, std::ostreambuf iterator<char, std::char_traits<char> > >:
insert_int<long>(std::ostreambuf iterator<char, std::char_traits<char> >, st
Los_base&, char, long) const (in fusr/lib/x86 64-1linux-gnu/libstdc++.50.6.0.2

by 8x4F3F6EC: std::num_put<char, std::ostreambuf iterator<char, std
: :char_traits<char> > >::do_put(std::ostreambuf iterator<char, std::char_traits<
char> >, std::i0s_base&, char, long) const (in /fusr/lib/x86 64-1linux-gnu/libstdc
++.50.6.0.22)
==14777== by 8x4F4BF19: std::ostream& std::ostream:: M insert<long=(long) (in
fusr/1ib/x86 _64-lipux-gnu/libstdc++.50.6.0.22)
==14777==




Valgrind example #2:

<fstream-
<lostream=
std;

int main(){

int* num counts int(4);

1nt* counts = int[*num counts];
(int 1 = B; 1 =< *pnum counts: ++1){
counts[1i] = 1;




Valgrind example #2:

int main(){
int* num counts int(4);
int* counts = int[*num counts];
J: 1 =« *num counts: ++1J{

]
I.J.|1-J.=-:

counts[1i] =

[2017-02-09 11:19:24 alex@Rincewind valgrinad examples]$ g++ test no delete.cpp -
o test no delete.o
[2017 - 92-09 11:20:11 alex@Rincewind valgrind examples]$ ./test no delete.o




Valgrind example #2:

[2017-02-09 11:20:13 alex@Rincewind valgrind examples]$S g++ -g test _no _delete.cp
p -o memcheck test no delete.o

[2017-02-09 11:20:47 alex@Rincewind valgrind examples]S$ valgrind . /memcheck test
_no_delete.o

==14925==
==14925==
==14925==
==14925==
==14925==
==14925==
==14925==
==14925==
==14925==
==14925==
==14925==
==14925==
==14925==
==14925==
==14925==
==14925==
==14925==
==14925==
==14925==
==14925==

Memcheck, a memory error detector

Copyright (C) 2002-2015, and GNU GPL'd, by Julian Seward et al.

Using Valgrind-3.12.0.SVN and LibVEX; rerun with -h for copyright info
Command: ./memcheck test no delete.o

HEAP SUMMARY:
in use at exit: 20 bytes in 2 blocks
total heap usage: 3 allocs, 1 frees, 72,724 bytes allocated

LEAK SUMMARY :
definitely lost: 20 bytes in 2 blocks
indirectly lost: © bytes in ® blocks
possibly lost: ©® bytes in © blocks
still reachable: © bytes in ® blocks
suppressed: © bytes in ® blocks
Rerun with --leak-check=full to see details of leaked memory

For counts of detected and suppressed errors, rerun with: -v
ERROR SUMMARY: © errors from ® contexts (suppressed: @ from @)




Valgrind example #2:

[2017-82-09 11:20:13 alex@Rincewind valgrind examples]S g++ -g test no _delete.cp
p -o memcheck test no delete.o

[2017-02-09 11:20:47 alex@Rincewind valgrind examples]S$ valgrind . /memcheck test
_no_delete.o

==14925== Memcheck, a memory error detector

==14925== Copyright (C) 2002-2015, and GNU GPL'd, by Julian Seward et al.
==14925== Using Valgrind-3.12.0.5VN and LibVEX; rerun with -h for copyright info
==14925== Command: ./memcheck test no delete.o

==14925==

==14925==

==14925== HEAP SUMMARY:

==14925== in use at exit: 20 bytes in 2 blocks

==14925== total heap usage: 3 allocs, 1 frees, 72,724 bytes allocated
==14925==

==14925==

==14925== indirectly lost: © bytes in ® blocks

==14925== possibly lost: ©® bytes in © blocks

==14925== still reachable: © bytes in ® blocks

==14925== suppressed: © bytes in ® blocks

==14925== Rerun with --leak-check=full to see details of leaked memory
==14925==

==14925== For counts of detected and suppressed errors, rerun with: -v
==14925== ERROR SUMMARY: ® errors from ® contexts (suppressed: ® from 0)




Valgrind example #2:

[2017-82-09 11:20:13 alex@Rincewind valgrind examples]S g++ -g test no _delete.cp
p -o memcheck test no delete.o

[2017-02-09 11:20:47 alex@Rincewind valgrind examples]S$ valgrind . /memcheck test
_no_delete.o

==14925== Memcheck, a memory error detector

==14925== Copyright (C) 2002-2015, and GNU GPL'd, by Julian Seward et al.
==14925== Using Valgrind-3.12.0.5VN and LibVEX; rerun with -h for copyright info
==14925== Command: ./memcheck test no delete.o

==14925==

==14925==

==14925== HEAP SUMMARY:

==14925== in use at exit: 20 bytes in 2 blocks

==14925== total heap usage: 3 allocs, 1 frees, 72,724 bytes allocated
==14925==

==14925==

==14925==

==14925== indirectly lost: © bytes in ® blocks

==14925== possibly lost: ©® bytes in © blocks

==14925== still reachable: © bytes in ® blocks

==14925== suppressed: © bytes in ® blocks

==14925==

==14925==

==14925== For counts of detected and suppressed errors, rerun with: -v

==14925== ERROR SUMMARY: ® errors from ® contexts (suppressed: ® from 0)




Valgrind example #2:

[2017-02-09 11:22:04 alex@Rincewind valgrind examples]$ valgrind --leak-check=fu
11 ./memcheck test no delete.o

==15519== Memcheck, a memory error detector

==15519== Copyright (C) 2002-2015, and GNU GPL'd, by Julian Sewara et al.
==15519== Using Valgrind-3.12.0.5VN ana LibVEX; rerun with -h for copyright info
==15519== Command: ./memcheck test no delete.o

==15519==

==15519==

==15519== HEAP SUMMARY :

==15519== in use at exit: 20 bytes in 2 blocks

==15519== total heap usage: 3 allocs, 1 frees, 72,724 bytes allocated
==15519==

==15519== 4 bytes in 1 blocks are definitely lost in loss record 1 of 2

==15519== at Ox4C2D1AF: operator new(unsigned long) (in fusr/lib/valgrind/vgp
reload memcheck-amd64-1inux.so0)

==15519== by 6x1088A1: main (test no delete.cpp:6)

==15519==

==15519== 16 bytes in 1 blocks are definitely lost in loss record 2 of 2
==15519== at Ox4C2D8CF: operator new[](unsigned long) (in fusr/lib/valgrind/v
gpreload memcheck-amd64-1inux.so)

==15519== by 0x1088CE: main (test no delete.cpp:7)

==15519==

==15519== LEAK SUMMARY:

==15519== definitely lost: 20 bytes in 2 blocks

==15519== indirectly lost: © bytes in ® blocks

==15519== possibly lost: @ bytes in ® blocks

==15519== still reachable: © bytes in ® blocks

==15519== suppressed: @ bytes in ® blocks

==15519==

==15519== For counts of detected and suppressed errors, rerun with: -v

==15519== ERROR SUMMARY: 2 errors from 2 contexts (suppressed: 0 from 0)




Valgrind example #2:

[2017-02-09 11:22:04 alex@Rincewind valgrind examples]$ valgrind --leak-check=fu
11 ./memcheck test no delete.o

==15519== Memcheck, a memory error detector

==15519== Copyright (C) 2002-2015, and GNU GPL'd, by Julian Seward et al.
==15519== Using Valgrind-3.12.0.SVN and LibVEX; rerun with -h for copyright info
==15519== Command: ./memcheck test no delete.o

==15519==

==15519==

==15519== HEAP SUMMARY:

==15519==

==15519==

==15519==

==15519== 4 bytes in 1 blocks are definitely lost in loss record 1 of 2
==15519== at 0x4C2D1AF: operator new(unsigned long) (in fusr/lib/valgrind/vgp
reload memcheck-amd64-1inux.so0)

==15519== by ©x1088A1: main (test no _delete.cpp:6)

==15519==

==15519== 16 bytes in 1 blocks are definitely lost in loss record 2 of 2
==15519== at 0x4C2D8CF: operator new[](unsigned long) (in /usr/lib/valgrind/v
gpreload memcheck-amd64-1inux.so)

==15519== by 8x1088CE: main (test no delete.cpp:7)

==15519==

==15519== LEAK SUMMARY:

==15519== definitely lost: 20 bytes in 2 blocks

==15519== indirectly lost: © bytes in ® blocks

==15519== possibly lost: @ bytes in ® blocks

==15519== still reachable: © bytes in ® blocks

==15519== suppressed: @ bytes in ® blocks

==15519==

==15519== For counts of detected and suppressed errors, rerun with: -v

==15519== ERROR SUMMARY: 2 errors from 2 contexts (suppressed: @ from 8)




Valgrind example #2:

[2017-02-09 11:22:04 alex@Rincewind valgrind examples]$ valgrind --leak-check=fu
11 ./memcheck test no delete.o

==15519== Memcheck, a memory error detector

==15519== Copyright (C) 2002-2015, and GNU GPL'd, by Julian Seward et al.
==15519== Using Valgrind-3.12.0.SVN and LibVEX; rerun with -h for copyright info
==15519== Command: ./memcheck test no delete.o

==15519==

==15519==

==15519== HEAP SUMMARY:

==15519== at 0x4C2D1AF: operator new(unsigned long) (in fusr/lib/valgrind/vgp
reload memcheck-amd64-1inux.so0)

==15519== by ©x1088A1: main (test no _delete.cpp:6)

==15519==

==15519== 16 bytes in 1 blocks are definitely lost in loss record 2 of 2
==15519== at 0x4C2D8CF: operator new[](unsigned long) (in /usr/lib/valgrind/v
gpreload memcheck-amd64-1inux.so)

==15519== by 8x1088CE: main (test no delete.cpp:7)

==15519==

==15519== LEAK SUMMARY:

==15519== definitely lost: 20 bytes in 2 blocks

==15519== indirectly lost: © bytes in ® blocks

==15519== possibly lost: @ bytes in ® blocks

==15519== still reachable: © bytes in ® blocks

==15519== suppressed: @ bytes in ® blocks

==15519==

==15519== For counts of detected and suppressed errors, rerun with: -v

==15519== ERROR SUMMARY: 2 errors from 2 contexts (suppressed: @ from 8)




Valgrind example #2:

[2017-02-09 11:22:04 alex@Rincewind valgrind examples]$ valgrind --leak-check=fu
11 ./memcheck test no delete.o

==15519== Memcheck, a memory error detector

==15519== Copyright (C) 2002-2015, and GNU GPL'd, by Julian Seward et al.
==15519== Using Valgrind-3.12.0.SVN and LibVEX; rerun with -h for copyright info
==15519== Command: ./memcheck test no delete.o

==15519==

==15519==

==15519== HEAP SUMMARY:

==15519== at 0x4C2D1AF: operator new(unsigned long) (in fusr/lib/valgrind/vgp
reload memcheck-amd64-1inux.so0)

—-15515-= by 0x1088A1: main (test_no_delete.cpp:6)

==15519==

==15519== 16 bytes in 1 blocks are definitely lost in loss record 2 of 2
==15519== at 0x4C2D8CF: operator new[](unsigned long) (in /usr/lib/valgrind/v
gpreload memcheck-amd64-1inux.so)

==15519== by 8x1088CE: main (test no delete.cpp:7)

==15519==

==15519== LEAK SUMMARY:

==15519== definitely lost: 20 bytes in 2 blocks

==15519== indirectly lost: © bytes in ® blocks

==15519== possibly lost: @ bytes in ® blocks

==15519== still reachable: © bytes in ® blocks

==15519== suppressed: @ bytes in ® blocks

==15519==

==15519== For counts of detected and suppressed errors, rerun with: -v

==15519== ERROR SUMMARY: 2 errors from 2 contexts (suppressed: @ from 8)




Valgrind example #2:

[2017-02-09 11:22:04 alex@Rincewind valgrind examples]$ valgrind --leak-check=fu
11 ./memcheck test no delete.o

==15519== Memcheck, a memory error detector

==15519== Copyright (C) 2002-2015, and GNU GPL'd, by Julian Seward et al.
==15519== Using Valgrind-3.12.0.SVN and LibVEX; rerun with -h for copyright info
==15519== Command: ./memcheck test no delete.o

==15519==

==15519==

==15519== HEAP SUMMARY:

==15519== at 0x4C2D1AF: operator new(unsigned long) (in fusr/lib/valgrind/vgp
reload memcheck-amd64-1inux.so0)

--15519== by @x1088A1: main (test_no_delete.cpp:6)

==15519== at 0x4C2D8CF: operator new[](unsigned long) (in /usr/lib/valgrind/v
gpreload memcheck-amd64-1inux.so)

==15519== by 8x1088CE: main (test no delete.cpp:7)

==15519==

==15519== LEAK SUMMARY:

==15519== definitely lost: 20 bytes in 2 blocks

==15519== indirectly lost: © bytes in ® blocks

==15519== possibly lost: @ bytes in ® blocks

==15519== still reachable: © bytes in ® blocks

==15519== suppressed: @ bytes in ® blocks

==15519==

==15519== For counts of detected and suppressed errors, rerun with: -v
==15519== ERROR SUMMARY: 2 errors from 2 contexts (suppressed: @ from 8)




Valgrind example #2:

[2017-02-09 11:22:04 alex@Rincewind valgrind examples]$ valgrind --leak-check=fu
11 ./memcheck test no delete.o

==15519== Memcheck, a memory error detector

==15519== Copyright (C) 2002-2015, and GNU GPL'd, by Julian Seward et al.
==15519== Using Valgrind-3.12.0.SVN and LibVEX; rerun with -h for copyright info
==15519== Command: ./memcheck test no delete.o

==15519==

==15519==

==15519== HEAP SUMMARY:

==15519== at 0x4C2D1AF: operator new(unsigned long) (in fusr/lib/valgrind/vgp
reload memcheck-amd64-1inux.so0)

--15519== by @x1088A1: main (test_no_delete.cpp:6)

==15519== at 0x4C2D8CF: operator new[](unsigned long) (in /usr/lib/valgrind/v
gpreload memcheck-amd64-1inux.so)

==15519== by 0x1088CE: main (test_no_delete.cpp:7)

==15519==

==15519== LEAK SUMMARY:

==15519== definitely lost: 20 bytes in 2 blocks

==15519== indirectly lost: © bytes in ® blocks

==15519== possibly lost: @ bytes in ® blocks

==15519== still reachable: © bytes in ® blocks

==15519== suppressed: @ bytes in ® blocks

==15519==

==15519== For counts of detected and suppressed errors, rerun with: -v
==15519== ERROR SUMMARY: 2 errors from 2 contexts (suppressed: @ from 8)




Valgrind example #3:

<fstream=
<lostream=
std:

int main(){
int* num counts int(4);

1nt* counts = int[*num counts]:;
(zpnt 1 = B; 1 < *num counts:; ++1){
counts[1i] = 1;

num counts;
counts;




Valgrind example #3:

int* num counts int(4);
int* counts = l'f[‘num 1DUﬂt5]

(zpt 1 = B; 1 *num counts; ++1J{
counts[1] = 1;

num counts;
counts;

[2017-02-09 11:20:53 alex@Rincewind valgrind examples]$S g++ test wrong delete.cp
p -0 test wrong delete.o

[2017-82-09 11:21:27 alex@Rincewind valgrind examples]$S

jtest_wrong_delete.o



Valgrind example #3:

[2017-82-09 11:21:29 alex@Rincewind valgrind examples]$ g++ -g test wrong delete
.cpp -0 memcheck test wrong delete.o

[2017-02-09 11:21:59 alex@Rincewind valgrind examples]$ valgrind ./memcheck test
_Wwrong_delete.o

==15095== Memcheck, a memory error detector

==15095== Copyright (C) 2002-2015, and GNU GPL'd, by Julian Seward et al.
==15095== Using Valgrind-3.12.0.5VN and LibVEX; rerun with -h for copyright info
==15095== Command: ./memcheck test wrong delete.o

==15095==

==15095== Mismatched free() / delete [ delete []

==15095== at Ox4C2E76B: operator delete[](void*) (in Jusr/lib/valgrind/vgprel
oad memcheck-amd64-1inux.so0)

==15095== by ©x1089BD: main (test wrong delete.cpp:11)

==15095== Address 0x5ab9c80 is ® bytes inside a block of size 4 alloc'd
==15095== at Ox4C2D1AF: operator new(unsigned long) (in fusr/lib/valgrind/vgp
reload memcheck-amdé4-1inux.so)

==15895== by 0x108941: main (test wrong delete.cpp:6)

==15095==

==15095== Mismatched free() / delete [ delete []

==15895== at Ox4C2E26B: operator delete(void*) (in Jfusr/lib/valgrind/vgpreloa
d memcheck-amd64-1inux.so)

==15095== by 0x1089CE: main (test wrong delete.cpp:12)

==15095== Address 0x5ab9cd® is ® bytes inside a block of size 16 alloc'd
==15095== at @x4C2DBCF: operator new[](unsigned long) (in fusr/lib/valgrind/v
gpreload memcheck-amd64-1inux.so)

==15095== by 0x10896E: main (test wrong delete.cpp:7)

==15095==

==15095==

==15095== HEAP SUMMARY:

==15895== in use at exit: ® bytes in ©® blocks

==15895== total heap usage: 3 allocs, 3 frees, 72,724 bytes allocated
==15095==

==15095== All heap blocks were freed -- no leaks are possible

==15095==

==15095== For counts of detected and suppressed errors, rerun with: -v

==15095== ERROR SUMMARY: 2 errors from 2 contexts (suppressed: @ from @)




Valgrind example #3:

[2017-82-09 11:21:29 alex@Rincewind valgrind examples]$ g++ -g test wrong delete
.cpp -0 memcheck test wrong delete.o

[2017-02-09 11:21:59 alex@Rincewind valgrind examples]$ valgrind ./memcheck test
_Wwrong_delete.o

==15095== Memcheck, a memory error detector

==15095== Copyright (C) 2002-2015, and GNU GPL'd, by Julian Seward et al.
==15095== Using Valgrind-3.12.0.5VN and LibVEX; rerun with -h for copyright info
==15095== Command: ./memcheck test wrong delete.o

==15095== at Ox4C2E76B: operator delete[](void*) (in Jusr/lib/valgrind/vgprel
oad memcheck-amd64-1inux.so0)

==15095== by ©x1089BD: main (test wrong delete.cpp:11)

==15095== Address 0x5ab9c80 is ® bytes inside a block of size 4 alloc'd
==15095== at Ox4C2D1AF: operator new(unsigned long) (in fusr/lib/valgrind/vgp
reload memcheck-amdé4-1inux.so)

==15895== by 0x108941: main (test wrong delete.cpp:6)

==15095==

==15095== Mismatched free() / delete [ delete []

==15895== at Ox4C2E26B: operator delete(void*) (in Jfusr/lib/valgrind/vgpreloa
d memcheck-amd64-1inux.so)

==15095== by 0x1089CE: main (test wrong delete.cpp:12)

==15095== Address 0x5ab9cd® is ® bytes inside a block of size 16 alloc'd
==15095== at @x4C2DBCF: operator new[](unsigned long) (in fusr/lib/valgrind/v
gpreload memcheck-amd64-1inux.so)

==15095== by 0x10896E: main (test wrong delete.cpp:7)

==15095==

==15095==

==15095== HEAP SUMMARY:

==15895== in use at exit: ® bytes in ©® blocks

==15895== total heap usage: 3 allocs, 3 frees, 72,724 bytes allocated
==15095==

==15095== All heap blocks were freed -- no leaks are possible

==15095==

==15095== For counts of detected and suppressed errors, rerun with: -v

==15095== ERROR SUMMARY: 2 errors from 2 contexts (suppressed: @ from @)




Valgrind example #3:

[2017-02-09 11:21:29 alex@Rincewind valgrind examples]$ g++ -g test wrong delete
.cpp -0 memcheck test wrong delete.o

[2017-02-09 11:21:59 alex@Rincewind valgrind examples]$ valgrind ./memcheck test
wrong_delete.o

==15095== Memcheck, a memory error detector

==15095== Copyright (C) 2002-2015, and GNU GPL'd, by Julian Seward et al.
==15095== Using Valgrind-3.12.0.5VN and LibVEX; rerun with -h for copyright info
==15095== Command: ./memcheck test wrong delete.o

==15095== at Ox4C2E76B: operator delete[](void*) (in /fusr/lib/valgrind/vgprel
oad memcheck-amd64-1inux.so0)

==15095== by ©x1089BD: main (test wrong delete.cpp:11)

==15095== Address 0x5ab9c80 is ® bytes inside a block of size 4 alloc'd
==15095== at 0x4C2D1AF: operator new(unsigned long) (in fusr/lib/valgrind/vgp
reload memcheck-amdé4-1linux.so)

==15895==

==15895==

==15095== Mismatched free() / delete / delete []

==15095== at Ox4C2E26B: operator delete(void*) (in /fusr/lib/valgrind/vgpreloa
d memcheck-amd64-1inux.so)

==15095== by ©x1089CE: main (test wrong_delete.cpp:12)

==15095== Address 0x5ab9cd® is ® bytes inside a block of size 16 alloc'd
==15095== at 0x4C2D8CF: operator new[](unsigned long) (in /usr/lib/valgrind/v
gpreload memcheck-amd64-1inux.so)

==15095== by ©x10896E: main (test wrong delete.cpp:7)

==15895==

==15895==

==15095== HEAP SUMMARY:

==15895== in use at exit: ® bytes in ©® blocks

==15895== total heap usage: 3 allocs, 3 frees, 72,724 bytes allocated

== EEEE

==15095== All heap blocks were freed -- no leaks are possible

==15095==

==15095== For counts of detected and suppressed errors, rerun with: -v

==15095== ERROR SUMMARY: 2 errors from 2 contexts (suppressed: @ from @)




Valgrind example #3:

[2017-02-09 11:21:29 alex@Rincewind valgrind examples]$ g++ -g test wrong delete
.cpp -0 memcheck test wrong delete.o

[2017-02-09 11:21:59 alex@Rincewind valgrind examples]$ valgrind ./memcheck test
wrong_delete.o

==15095== Memcheck, a memory error detector

==15095== Copyright (C) 2002-2015, and GNU GPL'd, by Julian Seward et al.
==15095== Using Valgrind-3.12.0.5VN and LibVEX; rerun with -h for copyright info
==15095== Command: ./memcheck test wrong delete.o

==15095== at Ox4C2E76B: operator delete[](void*) (in /fusr/lib/valgrind/vgprel
oad memcheck-amd64-1inux.so0)

==15095== by ©x1089BD: main (test wrong delete.cpp:11)

==15095== Address 0x5ab9c80 is ® bytes inside a block of size 4 alloc'd
==15095== at 0x4C2D1AF: operator new(unsigned long) (in fusr/lib/valgrind/vgp
reload memcheck-amdé4-1linux.so)

==15895==

==15895==

==15095==

==15095== at Ox4C2E26B: operator delete(void*) (in /fusr/lib/valgrind/vgpreloa
d memcheck-amd64-1inux.so)

==15095== by ©x1089CE: main (test wrong_delete.cpp:12)

==15095== Address 0x5ab9cd® is ® bytes inside a block of size 16 alloc'd
==15095== at 0x4C2D8CF: operator new[](unsigned long) (in /usr/lib/valgrind/v
gpreload memcheck-amd64-1inux.so)

==15095== by ©x10896E: main (test wrong delete.cpp:7)

==15895==

==15895==

==15095== HEAP SUMMARY:

==15895== in use at exit: ® bytes in ©® blocks

==15895== total heap usage: 3 allocs, 3 frees, 72,724 bytes allocated

== EEEE

==15095== All heap blocks were freed -- no leaks are possible

==15095==

==15095== For counts of detected and suppressed errors, rerun with: -v

==15095== ERROR SUMMARY: 2 errors from 2 contexts (suppressed: @ from @)




Valgrind example #3:

[2017-02-09 11:21:29 alex@Rincewind valgrind examples]$ g++ -g test wrong delete
.cpp -0 memcheck test wrong delete.o

[2017-02-09 11:21:59 alex@Rincewind valgrind examples]$ valgrind ./memcheck test
wrong_delete.o

==15095== Memcheck, a memory error detector

==15095== Copyright (C) 2002-2015, and GNU GPL'd, by Julian Seward et al.
==15095== Using Valgrind-3.12.0.5VN and LibVEX; rerun with -h for copyright info
==15095== Command: ./memcheck test wrong delete.o

==15095== at Ox4C2E76B: operator delete[](void*) (in /fusr/lib/valgrind/vgprel
oad memcheck-amd64-1inux.so0)

==15095== by ©x1089BD: main (test wrong delete.cpp:11)

==15095== Address 0x5ab9c80 is ® bytes inside a block of size 4 alloc'd
==15095== at 0x4C2D1AF: operator new(unsigned long) (in fusr/lib/valgrind/vgp
reload memcheck-amdé4-1linux.so)

==15895==

==15895==

==15095==

==15095== at Ox4C2E26B: operator delete(void*) (in /fusr/lib/valgrind/vgpreloa
d memcheck-amd64-1inux.so)

==15095== by ©x1089CE: main (test wrong_delete.cpp:12)

==15095== Address 0x5ab9cd® is ® bytes inside a block of size 16 alloc'd
==15095== at 0x4C2D8CF: operator new[](unsigned long) (in /usr/lib/valgrind/v
gpreload memcheck-amd64-1inux.so)

==15095==

==15895==

==15895==

==15095== HEAP SUMMARY:

==15895== in use at exit: ® bytes in ©® blocks

==15895== total heap usage: 3 allocs, 3 frees, 72,724 bytes allocated

== EEEE

==15095== All heap blocks were freed -- no leaks are possible

==15095==

==15095== For counts of detected and suppressed errors, rerun with: -v

==15095== ERROR SUMMARY: 2 errors from 2 contexts (suppressed: @ from @)
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