

Discussion Section 8

● Baum-Welch

● NP-completeness proofs (or how to say
“actually, this probably can't be done
efficiently”)

Viterbi and Baum-Welch are
maximizing different functions

Viterbi and Baum-Welch are
maximizing different functions

max
p

Pθ (p ,S)

Viterbi and Baum-Welch are
maximizing different functions

● Viterbi likelihood:

● Baum-Welch likelihood:

max
p

Pθ (p ,S)

∑
p

Pθ(p ,S)

Baum-Welch

Baum-Welch

1) Use forward algorithm to find log likelihood of
the sequence (i.e. sum of all paths)

Baum-Welch

1) Use forward algorithm to find log likelihood of
the sequence (i.e. sum of all paths)

2) Use forward-backward to get fractional
counts for each edge type

Baum-Welch

1) Use forward algorithm to find log likelihood of
the sequence (i.e. sum of all paths)

2) Use forward-backward to get fractional
counts for each edge type

(total probability of paths passing through edge)/
(total probability of all paths)

Baum-Welch

1) Use forward algorithm to find log likelihood of
the sequence (i.e. sum of all paths)

2) Use forward-backward to get fractional
counts for each edge type

(total probability of paths passing through edge)/
(total probability of all paths)

3) Re-estimate transition and emission
probabilities by calculating the expected
number of each edge type

Forward-backward algorithm

A G C

Forward-backward algorithm

A G C

Forward-backward algorithm

A G C

For each node:
● Forward: Store the sum of probabilities of paths ending at

position i state k

Forward-backward algorithm

A G C

For each node:
● Forward: Store the sum of probabilities of paths ending at

position i state k
● Backward: Store the sum of probabilities of paths starting at

position i state k

Forward-backward algorithm

A G C

Forward-backward algorithm

A G C

Total probability of paths passing through position i state k:

Forward-backward algorithm

A G C

Total probability of paths passing through position i state k:
● forward(i, k) x emission(S

i
, k) x backward(i, k)

Forward-backward algorithm

A G C

Total probability of paths passing through position i state k:
● forward(i, k) x emission(S

i
, k) x backward(i, k)

● In this example, add this weighted count to the numerator for the
blue state emitting 'G' and the denominator for all blue state
emission probabilities

Forward-backward algorithm

A G C

Forward-backward algorithm

A G C

Total probability of paths passing from position i-1 state k' to position i
state k:

Forward-backward algorithm

A G C

Total probability of paths passing from position i-1 state k' to position i
state k:
● forward(i-1, k') x emission(S

i-1
, k') x transition(k', k) x emission(S

i
, k) x

backward(i, k)

Forward-backward algorithm

A G C

Total probability of paths passing from position i-1 state k' to position i
state k:
● forward(i-1, k') x emission(S

i-1
, k') x transition(k', k) x emission(S

i
, k) x

backward(i, k)
● In this example, add this weighted count to the numerator for the

transitions from blue to red and the denominator for all transition out
of blue states

An alternative way to think about
updating

● Some terminology for the following slides

An alternative way to think about
updating

● Some terminology for the following slides
– : The forward probability of being in state k at

position i
αk (i)

An alternative way to think about
updating

● Some terminology for the following slides
– : The forward probability of being in state k at

position i

– : The backward probability of being in state k at
position i

αk (i)

βk (i)

An alternative way to think about
updating

● Some terminology for the following slides
– : The forward probability of being in state k at

position i

– : The backward probability of being in state k at
position i

– : The emission probability of the character at
position i in state k

αk (i)

βk (i)

ek (S i)

An alternative way to think about
updating

● Some terminology for the following slides
– : The forward probability of being in state k at

position i

– : The backward probability of being in state k at
position i

– : The emission probability of the character at
position i in state k

– : The transition probability from state k to state l

αk (i)

βk (i)

ek (S i)

akl

An alternative way to think about
updating

An alternative way to think about
updating

A G C

An alternative way to think about
updating

A G C

Consider the probabilities at each position:

An alternative way to think about
updating

A G C

Consider the probabilities at each position:
● figure out the probability of being in state k at position i

An alternative way to think about
updating

A G C

Consider the probabilities at each position:
● figure out the probability of being in state k at position i

γk (i)=
αk (i)ek (Si)βk (i)

∑
j=1

N

α j(i)e j(S i)β j(i)

An alternative way to think about
updating

A G C

An alternative way to think about
updating

A G C

Consider the probabilities at each position:

An alternative way to think about
updating

A G C

Consider the probabilities at each position:
● figure out the probability of going from state k to state l from position

i to position i+1

An alternative way to think about
updating

A G C

Consider the probabilities at each position:
● figure out the probability of going from state k to state l from position

i to position i+1

ξkl(i)=
αk (i)ek (S i)akl el(S i+1)βl(i+1)

∑
m=1

N

∑
n=1

N

αm(i)em (S i)amn en(Si+1)βn(i+1)

An alternative way to think about
updating

● The initial probabilities for each state k can be updated to

An alternative way to think about
updating

γk (1)

● The initial probabilities for each state k can be updated to

● The transition probability from state k to state l can be
updated to

An alternative way to think about
updating

γk (1)

∑
i=1

ξkl(i)

∑
i=1

γk (i)

● The initial probabilities for each state k can be updated to

● The transition probability from state k to state l can be
updated to

An alternative way to think about
updating

γk (1)

∑
i=1

ξkl(i)

∑
i=1

γk (i)
Remember to
ignore the last
position

● The initial probabilities for each state k can be updated to

● The transition probability from state k to state l can be
updated to

● The emission probability for symbol v from state k can be
updated to

An alternative way to think about
updating

γk (1)

∑
i=1

ξkl(i)

∑
i=1

γk (i)

∑
i=1

1Si= v γk (i)

∑
i=1

γk (i)

Remember to
ignore the last
position

● The initial probabilities for each state k can be updated to

● The transition probability from state k to state l can be
updated to

● The emission probability for symbol v from state k can be
updated to

An alternative way to think about
updating

γk (1)

∑
i=1

ξkl(i)

∑
i=1

γk (i)

∑
i=1

1Si= v γk (i)

∑
i=1

γk (i)
1S i=v=

1 if Si=v
0 otherwise

Remember to
ignore the last
position

Notes for debugging

1) Try calculating some simple forward and
backward probabilities by hand to check your
algorithm

2) Make sure the sum of the numerators for a
single state or transition from a given state
equals the associated denominator

3) The likelihood at each iteration should
increase, if it decreases then you have a bug

Formal definition of P, NP, and NP-
hard

Formal definition of P, NP, and NP-
hard

● P: The set of all problems such that you can find
a solution in polynomial time

Formal definition of P, NP, and NP-
hard

● P: The set of all problems such that you can find
a solution in polynomial time

● NP: The set of all problems such that you can
verify a solution is correct in polynomial time

Formal definition of P, NP, and NP-
hard

● P: The set of all problems such that you can find
a solution in polynomial time

● NP: The set of all problems such that you can
verify a solution is correct in polynomial time

● NP-hard: The set of all problems that can be
reduced to the hardest NP problem

Formal definition of P, NP, and NP-
hard

● P: The set of all problems such that you can find
a solution in polynomial time

● NP: The set of all problems such that you can
verify a solution is correct in polynomial time

● NP-hard: The set of all problems that can be
reduced to the hardest NP problem

● Open question: Does P = NP?

Formal definition of P, NP, and NP-
hard

How to prove that a problem is NP-
complete

How to prove that a problem is NP-
complete

● NP-complete problems are NP problems that are
also NP-hard

How to prove that a problem is NP-
complete

● NP-complete problems are NP problems that are
also NP-hard

● By proving a problem is NP complete, you prove
that it is at least as difficult as any known NP-
complete problem

How to prove that a problem is NP-
complete

● NP-complete problems are NP problems that are
also NP-hard

● By proving a problem is NP complete, you prove
that it is at least as difficult as any known NP-
complete problem

● This doesn't necessarily mean you should give
up, approximate P algorithms may exist for your
NP problem

How to prove that a problem is NP-
complete

How to prove that a problem is NP-
complete

● There are four steps to an NP-completeness
proof

How to prove that a problem is NP-
complete

● There are four steps to an NP-completeness
proof
1) Prove the problem is in NP

How to prove that a problem is NP-
complete

● There are four steps to an NP-completeness
proof
1) Prove the problem is in NP

2) Construct an algorithm to transform a known NP-
complete problem into your problem

How to prove that a problem is NP-
complete

● There are four steps to an NP-completeness
proof
1) Prove the problem is in NP

2) Construct an algorithm to transform a known NP-
complete problem into your problem

3) Prove that solutions to your problem are correct if
and only if they are solutions to the reduced NP-
complete problem

How to prove that a problem is NP-
complete

● There are four steps to an NP-completeness
proof
1) Prove the problem is in NP

2) Construct an algorithm to transform a known NP-
complete problem into your problem

3) Prove that solutions to your problem are correct if
and only if they are solutions to the reduced NP-
complete problem

4) Prove your reduction algorithm is in P

How to prove that a problem is NP-
complete

How to prove that a problem is NP-
complete

● There are many problems that have been proven
to be NP-complete that you can select from

How to prove that a problem is NP-
complete

● There are many problems that have been proven
to be NP-complete that you can select from
● There's even a book that lists them and their proofs

How to prove that a problem is NP-
complete

● There are many problems that have been proven
to be NP-complete that you can select from
● There's even a book that lists them and their proofs

● Some examples:

How to prove that a problem is NP-
complete

● There are many problems that have been proven
to be NP-complete that you can select from
● There's even a book that lists them and their proofs

● Some examples:
● 3SAT (the canonical example)

How to prove that a problem is NP-
complete

● There are many problems that have been proven
to be NP-complete that you can select from
● There's even a book that lists them and their proofs

● Some examples:
● 3SAT (the canonical example)
● Set cover

How to prove that a problem is NP-
complete

● There are many problems that have been proven
to be NP-complete that you can select from
● There's even a book that lists them and their proofs

● Some examples:
● 3SAT (the canonical example)
● Set cover
● Knapsack problem

How to prove that a problem is NP-
complete

● There are many problems that have been proven
to be NP-complete that you can select from
● There's even a book that lists them and their proofs

● Some examples:
● 3SAT (the canonical example)
● Set cover
● Knapsack problem
● Traveling salesman

How to prove that a problem is NP-
complete

● There are many problems that have been proven
to be NP-complete that you can select from
● There's even a book that lists them and their proofs

● Some examples:
● 3SAT (the canonical example)
● Set cover
● Knapsack problem
● Traveling salesman
● Bejeweled/Candy Crush (there's a paper on arXiv)

How to prove that a problem is NP-
complete

● There are many problems that have been proven
to be NP-complete that you can select from
● There's even a book that lists them and their proofs

● Some examples:
● 3SAT (the canonical example)
● Set cover
● Knapsack problem
● Traveling salesman
● Bejeweled/Candy Crush (there's a paper on arXiv)
● Classic Nintendo games (again, check out arXiv)

	Slide 1
	page2 (1)
	page2 (2)
	page2 (3)
	page3 (1)
	page3 (2)
	page3 (3)
	page3 (4)
	page3 (5)
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	page8 (1)
	page8 (2)
	page8 (3)
	page8 (4)
	page9 (1)
	page9 (2)
	page9 (3)
	page9 (4)
	page10 (1)
	page10 (2)
	page10 (3)
	page10 (4)
	page10 (5)
	page10 (6)
	page11 (1)
	page11 (2)
	page11 (3)
	page11 (4)
	page12 (1)
	page12 (2)
	page12 (3)
	page12 (4)
	page13 (1)
	page13 (2)
	page13 (3)
	page13 (4)
	page13 (5)
	page13 (6)
	Slide 42
	page15 (1)
	page15 (2)
	page15 (3)
	page15 (4)
	page15 (5)
	Slide 48
	page17 (1)
	page17 (2)
	page17 (3)
	page17 (4)
	page18 (1)
	page18 (2)
	page18 (3)
	page18 (4)
	page18 (5)
	page18 (6)
	page19 (1)
	page19 (2)
	page19 (3)
	page19 (4)
	page19 (5)
	page19 (6)
	page19 (7)
	page19 (8)
	page19 (9)
	page19 (10)

