
  

Discussion Section 8

● Baum-Welch

● NP-completeness proofs (or how to say 
“actually, this probably can't be done 
efficiently”)
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Viterbi and Baum-Welch are 
maximizing different functions

● Viterbi likelihood:

● Baum-Welch likelihood:

max
p

Pθ ( p ,S)

∑
p

Pθ( p ,S)
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Baum-Welch

1) Use forward algorithm to find log likelihood of 
the sequence (i.e. sum of all paths)

2) Use forward-backward to get fractional 
counts for each edge type

(total probability of paths passing through edge)/
(total probability of all paths)

3) Re-estimate transition and emission 
probabilities by calculating the expected 
number of each edge type
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Forward-backward algorithm

A G C

For each node:
● Forward: Store the sum of probabilities of paths ending at 

position i state k
● Backward: Store the sum of probabilities of paths starting at 

position i state k
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Forward-backward algorithm

A G C

Total probability of paths passing through position i state k:
● forward(i, k) x emission(S

i
, k) x backward(i, k)

● In this example, add this weighted count to the numerator for the 
blue state emitting 'G' and the denominator for all blue state 
emission probabilities
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state k:



  

Forward-backward algorithm

A G C

Total probability of paths passing from position i-1 state k' to position i 
state k:
● forward(i-1, k') x emission(S

i-1
, k') x transition(k', k) x emission(S

i
, k) x 

backward(i, k)



  

Forward-backward algorithm

A G C

Total probability of paths passing from position i-1 state k' to position i 
state k:
● forward(i-1, k') x emission(S

i-1
, k') x transition(k', k) x emission(S

i
, k) x 

backward(i, k)
● In this example, add this weighted count to the numerator for the 

transitions from blue to red and the denominator for all transition out 
of blue states
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● Some terminology for the following slides
–        : The forward probability of being in state k at 

position i

–        : The backward probability of being in state k at 
position i

–         : The emission probability of the character at 
position i in state k

–    : The transition probability from state k to state l

αk (i )

βk (i)

ek (S i)

akl

An alternative way to think about 
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An alternative way to think about 
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A G C

Consider the probabilities at each position:
● figure out the probability of being in state k at position i

γk (i)=
αk ( i)ek (Si)βk (i)

∑
j=1

N

α j( i)e j(S i)β j(i)
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An alternative way to think about 
updating

A G C

Consider the probabilities at each position:
● figure out the probability of going from state k to state l  from position 

i to position i+1

ξkl( i)=
αk (i)ek (S i)akl el(S i+1)βl(i+1)

∑
m=1

N

∑
n=1

N

αm(i)em (S i)amn en(Si+1)βn(i+1)
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Remember to 
ignore the last 
position
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● The initial probabilities for each state k can be updated to 

● The transition probability from state k to state l can be 
updated to

● The emission probability for symbol v from state k can be 
updated to

An alternative way to think about 
updating

γk (1)

∑
i=1

ξkl(i)

∑
i=1

γk (i)

∑
i=1

1Si= v γk (i)

∑
i=1

γk (i)
1S i=v=

1 if Si=v
0 otherwise

Remember to 
ignore the last 
position



  

Notes for debugging

1) Try calculating some simple forward and 
backward probabilities by hand to check your 
algorithm

2) Make sure the sum of the numerators for a 
single state or transition from a given state 
equals the associated denominator

3) The likelihood at each iteration should 
increase, if it decreases then you have a bug
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Formal definition of P, NP, and NP-
hard

● P: The set of all problems such that you can find 
a solution in polynomial time

● NP: The set of all problems such that you can 
verify a solution is correct in polynomial time

● NP-hard: The set of all problems that can be 
reduced to the hardest NP problem

● Open question: Does P = NP?
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How to prove that a problem is NP-
complete

● NP-complete problems are NP problems that are 
also NP-hard

● By proving a problem is NP complete, you prove 
that it is at least as difficult as any known NP-
complete problem

● This doesn't necessarily mean you should give 
up, approximate P algorithms may exist for your 
NP problem
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How to prove that a problem is NP-
complete

● There are four steps to an NP-completeness 
proof
1) Prove the problem is in NP

2) Construct an algorithm to transform a known NP-
complete problem into your problem

3) Prove that solutions to your problem are correct if 
and only if they are solutions to the reduced NP-
complete problem

4) Prove your reduction algorithm is in P
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How to prove that a problem is NP-
complete

● There are many problems that have been proven 
to be NP-complete that you can select from
● There's even a book that lists them and their proofs

● Some examples:
● 3SAT (the canonical example)
● Set cover
● Knapsack problem
● Traveling salesman
● Bejeweled/Candy Crush (there's a paper on arXiv)
● Classic Nintendo games (again, check out arXiv)
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