
Today’s Lecture: HMMs

• Definitions

• Examples

• Probability calculations

– WDAG

– Dynamic programming algorithms:

• Forward

• Viterbi

• Parameter estimation

– Viterbi training

1

2

Hidden Markov Models

• Probability models for sequences of observed

symbols, e.g.

– nucleotide or amino acid residues

– aligned pairs of residues

– aligned set of residues corresponding to leaves of an

underlying evolutionary tree

– angles in protein chain (structure modelling)

– sounds (speech recognition)

3

• Assume a sequence of “hidden” (unobserved) states
underlies each observed symbol sequence

• Each state “emits” symbols (one symbol at a time)

• States may correspond to underlying “reality” we
are trying to infer, e.g.

– unobserved biological feature:

• (positions within) site,

• coding region of gene

– rate of evolution

– protein structural element

– speech phoneme

4

A

1

G

2

C

3

A

i

T

n

... ...

observed symbols

unobserved states

5

A

1

G

2

C

3

A

i

T

n

... ...

observed symbols

unobserved states

0 0

begin state end state –

(we do not

include)

6

Advantages of HMMs

• Flexible –gives reasonably good models in

wide variety of situations

• Computationally efficient

• Often interpretable:

– hidden states can correspond to biological features.

– can find most probable sequence of hidden states

 = biological “parsing” of residue sequence.

7

HMMs: Formal Definition

• Alphabet B = {b} of observed symbols

• Set S = {k} of hidden states (usually k = 0,1, 2 ...,m; 0 is
reserved for “begin” state, and sometimes also an “end”
state)

• (Markov chain property): prob of state occurring at given
position depends only on immediately preceding state, and
is given by

transition probabilities (akl): akl = Prob(next state is l | curr state is k)

lakl = 1, for each k.

– Usually, many transition probabilities are set to 0.

– Model topology is the # of states, and allowed (i.e. akl  0)

 transitions.

Sometimes omit begin state, in which case need initiation
probabilities (pk) for sequence starting in a given state

8

A

1

G

2

C

3

A

i

T

n

... ...

observed symbols

unobserved states

0 0
a1 2

e1
(A)

a2 3

e2
(G) e3

(C) ei
(A) en

(T)

ai i+1
a3 4

a0 1

9

• Prob that symbol occurs at given sequence
position depends only on hidden state at that
position, and is given by

emission probabilities:

ek(b) = Prob(observed symbol is b | curr state is k)

 (begin and end states do not emit symbols)

• Note that

– there are no direct dependencies between observed
symbols in the sequence, however

– there are indirect dependencies implied by state
dependencies

10

• Can either

– define parameter values a priori, or

– estimate them from training data (observed sequences

of the type to be modelled).

• Usually one does a mixture of both –

– model topology is defined (some transitions set to 0),

but

– remaining parameters estimated

Where do the parameters come from?

11

A

1

G

2

C

3

A

i

T

n

... ...

observed symbols

unobserved states

0 0
a1 2

e1
(A)

a2 3

e2
(G) e3

(C) ei
(A) en

(T)

ai i+1
a3 4

a0 1

Hidden Markov Model

12

HMM Examples

• Site models:

– “states” correspond to positions (columns in the tables).

state i transitions only to state i+1:

• ai,i+1= 1 for all i;

• all other aij are 0

– emission probabilities are position-specific frequencies:

values in frequency table columns

13

Topology for Site HMM:

‘allowed’ transitions

(transits with non-zero prob – all are 1)

1 2 3 4 5 6 7 8 9 10 11 12 0

14

HMM for C. elegans 3’ Splice Sites

A 3276 3516 2313 476 67 757 240 8192 0 3359 2401 2514

C 970 648 664 236 129 1109 6830 0 0 1277 1533 1847

G 593 575 516 144 39 595 12 0 8192 2539 1301 1567

T 3353 3453 4699 7336 7957 5731 1110 0 0 1017 2957 2264

A 0.400 0.429 0.282 0.058 0.008 0.092 0.029 1.000 0.000 0.410 0.293 0.307

C 0.118 0.079 0.081 0.029 0.016 0.135 0.834 0.000 0.000 0.156 0.187 0.225

G 0.072 0.070 0.063 0.018 0.005 0.073 0.001 0.000 1.000 0.310 0.159 0.191

T 0.409 0.422 0.574 0.896 0.971 0.700 0.135 0.000 0.000 0.124 0.361 0.276

Exon Intron

3’ ss

CONSENSUS W W W T T t C A G r w w

1 2 3 4 5 6 7 8 9 10 11 12 0

E
m

is
si

o
n

p
ro

b
ab

il
it

ie
s

‘hidden’ states

15

– Can expand model to allow omission of nuc at some

positions by including other (downstream) transitions (or

via “silent states”)

– Can allow insertions by including additional states.

– transition probabilities no longer necessarily 1 or 0

16

Insertions & Deletions in Site Model

insertion state

other transitions correspond

to deletions

17

Examples (cont’d) – 1-state HMMs

• single state, emitting residues with specified freqs:

 = ‘background’ model

18

Examples (cont’d) – 2-state HMMs

• if a11 and a22 are small (close to 0), and

 a12 and a21 are large (close to 1),

 then get (nearly) periodic model with period 2; e.g.
– dinucleotide repeat in DNA, or

– (some) beta strands in proteins.

• if a11 and a22 large, and

 a12 and a21 small,

 then get models of alternating regions of different
compositions (specified by emission probabilities), e.g.
– higher vs. lower G+C content regions (RNA genes in thermophilic

bacteria); or

– hydrophobic vs. hydrophilic regions of proteins (e.g.
transmembrane domains).

19

G C C T G G A T A A A T

G+C-rich state

A+T-rich state

20

2-state HMMs
• Can find most probable state decomposition (‘Viterbi path’)

consistent with observed sequence

• Advantages over linked-list dynamic programming method
(lecture 3) for finding high-scoring segments:

– That method assumes you know appropriate parameters to find
targeted regions; HMM method can estimate parameters.

– HMM (easily) finds multiple segments

– HMM can attach probabilities to alternative decompositions

– HMM generalization to > 2 types of segments is easy – just allow
more states!

• Disadvantage:

– Markov assumption on state transitions implies geometric
distribution for lengths of regions -- may not be appropriate

21

A

1

G

2

C

3

A

i

T

n

... ...

observed symbols

unobserved states

0 0
a1 2

e1
(A)

a2 3

e2
(G) e3

(C) ei
(A) en

(T)

ai i+1
a3 4

a0 1

Hidden Markov Model

22

HMM Probabilities of Sequences

• Prob of sequence of states 123 ... n is
 a01

a12
a23

a34
... an-1n

.
• Prob of seq of observed symbols b1b2b3 ... bn,

 conditional on state sequence is
e1

(b1)e2
(b2) e3

(b3) ... en
(bn)

• Joint probability = a01
n

i=1 aii+1
ei

(bi)

(define ann+1
to be 1)

• (Unconditional) prob of observed sequence
= sum (of joint probs) over all possible state paths

– not practical to compute directly, by ‘brute force’! We will use
dynamic programming.

23

Computing HMM Probabilities
• WDAG structure for sequence HMMs:

– for ith position in seq (i = 1, ... n), have 2 nodes for each
state:

• total # nodes = 2ns + 1, where n = seq length, s = # states

– Pair of nodes for a given state at ith position is connected
by an emission edge

• Weight is the emission prob for ith observed residue.

• Can omit node pair if emission prob = 0.

– Have transition edges connecting (right-hand) state
nodes at position i with (left-hand) state nodes at position
i+1

• Weights are transition probs

• Can omit edges with transition prob = 0.

24

WDAG for 3-state HMM,

length n sequence

position i position i+1 position i-1

weights are emission

probabilities ek(bi) for ith

residue bi weights are transition

probabilities akl

... ...

 bi-1
bi bi+1

e1(bi)

e2(bi)

e3(bi)

a11
a12

a33

a11
e1(bi-1)

25

Beginning of Graph

position 2 position 3 position 1

...

b1 b2
b3

begin state

26

• Paths through graph from begin node to end node
correspond to sequences of states

• Product weight along path
 = joint probability of state sequence & observed symbol sequence

• Sum of (product) path weights, over all paths,
 = probability of observed sequence

• Sum of (product) path weights over
– all paths going through a particular node, or

– all paths that include a particular edge,

 divided by prob of observed sequence,
 = posterior probability of that edge or node

• Highest-weight path = highest probability state sequence

27

position i position i+1 position i-1

... ...

Path Weights

e1(bi-1)

a12

a23

e2(bi)

e3(bi+1)

28

• By general results on WDAGs, can use dynamic

programming to find

– sum of all product path weights

 = “forward algorithm” for probability of observed sequence

– highest weight path

 = “Viterbi algorithm” to find highest probability path

– sum of all product path weights through particular

node or particular edge

 = “forwards/backwards algorithm” to find posterior

probabilities

29

• In each case,

– compute successively for each node (by increasing

depth: left to right)

• the sum (for forward & forward/backward algorithm), or

• maximum (for Viterbi algorithm),

 of the weights of all paths ending at that node.

– In forwards/backwards approach, work through all

nodes twice, once in each direction.

• (N.B. paths are constrained to begin at the begin

node!)

30

w3

w1

w2

v1

v2

v3

v

For each vertex v, let f(v) = paths p ending at vweight(p), where

weight(p) = product of edge weights in p. Only consider paths

starting at ‘begin’ node.

Compute f(v) by dynam. prog: f(v) = iwi f(vi), where

vi ranges over the parents of v, and

wi = weight of the edge from vi to v.

Similarly for m(v) = maxp ending at v weight(p)

and for b(v) = p beginning at vweight(p)

(the paths beginning at v are the ones ending at v in the reverse graph).

The Viterbi path is

the most probable parse!

31

32

• Numerical issues: multiplying many small values can cause
underflow. Remedies:
– Scale weights to be close to 1 (affects all paths by same constant

factor – which can be multiplied back later); or

– (where possible) use log weights, so can add instead of
multiplying.

– see Rabiner & Tobias Mann links on web page
• & will discuss further in discussion section

• Complexity: O(|V|+|E|), total # vertices and edges.
– # nodes = 2ns + 2 where n = sequence length, s = # states.

– # edges = (n – 1)s2 + ns + 2s

– So overall complexity is O(ns2)
• (actually s2 can be reduced to # ‘allowed’ transitions between states –

depends on model topology).

33

HMM Parameter Estimation

• Suppose parameter values (transition & emission

probs) unknown

• Need to estimate from set of training sequences

• Maximum likelihood (ML) estimation (= choice of

param vals to maximize prob of data) is preferred

– optimality properties of ML estimates discussed in

Ewens & Grant

34

A

1

G

2

C

3

A

i

T

n

... ...

observed symbols

unobserved states

0 0
a1 2

e1
(A)

a2 3

e2
(G) e3

(C) ei
(A) en

(T)

ai i+1
a3 4

a0 1

Hidden Markov Model

35

Parameter estimation when

state sequence is known
• When underlying state sequence for each training sequence

is known,

– e.g.: weight matrix; Markov model

 then ML estimates are given by:

– emission probabilities:

ek(b)^ = (# times symbol b emitted by state k) / (# times state k occurs) .

– transition probabilities:

akl ^ = (# times state k followed by state l) / (# times state k occurs)

– in denominator above, omit occurrence at last position of sequence
(for transition probabilities)

• But include it for emission probs

– can include pseudocounts, to incorporate prior expectations/avoid
small sample overfitting (Bayesian justification)

36

Parameter estimation when

state sequences unknown
• Viterbi training

1. choose starting parameter values

2. find highest weight paths (Viterbi) for each sequence

3. estimate new emission and transition probs as above,

assuming Viterbi state sequence is true

4. iterate steps 2 and 3 until convergence

– not guaranteed to occur – but nearly always does

5. does not necessarily give ML estimates, but often are

reasonably good

