
Today’s Lecture: HMMs 
 

• Definitions 

• Examples 

• Probability calculations 

– WDAG  

– Dynamic programming algorithms: 

• Forward  

• Viterbi 

• Parameter estimation 

– Viterbi training 
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Hidden Markov Models 

• Probability models for sequences of observed 

symbols, e.g.  

– nucleotide or amino acid residues 

– aligned pairs of residues 

– aligned set of residues corresponding to leaves of an 

underlying evolutionary tree 

– angles in protein chain (structure modelling) 

– sounds (speech recognition)  
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• Assume a sequence of “hidden” (unobserved) states 
underlies each observed symbol sequence  

• Each state “emits” symbols (one symbol at a time) 

• States may correspond to underlying “reality” we 
are trying to infer, e.g.  

– unobserved biological feature: 

• (positions within) site,  

• coding region of gene 

– rate of evolution 

– protein structural element 

– speech phoneme 
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Advantages of HMMs  

• Flexible –gives reasonably good models in 

wide variety of situations  

• Computationally efficient 

• Often interpretable:  

– hidden states can correspond to biological features.  

– can find most probable sequence of hidden states 

    = biological “parsing” of residue sequence. 
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HMMs: Formal Definition 

• Alphabet B = {b} of observed symbols 

• Set S = {k} of hidden states (usually k = 0,1, 2 ...,m; 0 is 
reserved for “begin” state, and sometimes also an “end” 
state) 

• (Markov chain property): prob of state occurring at given 
position depends only on immediately preceding state, and 
is given by 

transition probabilities (akl): akl = Prob(next state is l | curr state is k) 

lakl = 1, for each k. 

– Usually, many transition probabilities are set to 0.  

– Model topology is the # of states, and allowed (i.e. akl  0)  

     transitions.  

Sometimes omit begin state, in which case need initiation 
probabilities (pk) for sequence starting in a given state 
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• Prob that symbol occurs at given sequence 
position depends only on hidden state at that 
position, and is given by  

emission probabilities:  

ek(b) = Prob(observed symbol is b | curr state is k) 

 (begin and end states do not emit symbols) 

•  Note that  

– there are no direct dependencies between observed 
symbols in the sequence, however 

– there are indirect dependencies implied by state 
dependencies 
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• Can either 

– define parameter values a priori, or  

– estimate them from training data (observed sequences 

of the type to be modelled). 

•  Usually one does a mixture of both –  

–  model topology is defined (some transitions set to 0), 

but 

–  remaining parameters estimated 

Where do the parameters come from? 
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HMM Examples 

• Site models:  

– “states” correspond to positions (columns in the tables). 

state i  transitions only to state i+1:  

• ai,i+1= 1 for all i;  

• all other aij are 0 

– emission probabilities are position-specific frequencies: 

values in frequency table columns 
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Topology for Site HMM:  

‘allowed’ transitions  

(transits with non-zero prob – all are 1) 

1 2 3 4 5 6 7 8 9 10 11 12 0 
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HMM for C. elegans 3’ Splice Sites   

 

 

A  3276  3516  2313   476    67   757   240  8192     0  3359  2401  2514  

C   970   648   664   236   129  1109  6830     0     0  1277  1533  1847  

G   593   575   516   144    39   595    12     0  8192  2539  1301  1567  

T  3353  3453  4699  7336  7957  5731  1110     0     0  1017  2957  2264  

 

 

A 0.400 0.429 0.282 0.058 0.008 0.092 0.029 1.000 0.000 0.410 0.293 0.307  

C 0.118 0.079 0.081 0.029 0.016 0.135 0.834 0.000 0.000 0.156 0.187 0.225  

G 0.072 0.070 0.063 0.018 0.005 0.073 0.001 0.000 1.000 0.310 0.159 0.191  

T 0.409 0.422 0.574 0.896 0.971 0.700 0.135 0.000 0.000 0.124 0.361 0.276  
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– Can expand model to allow omission of nuc at some 

positions by including other (downstream) transitions (or 

via “silent states”) 

– Can allow insertions by including additional states. 

– transition probabilities no longer necessarily 1 or 0 
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Insertions & Deletions in Site Model 

insertion state 

other transitions correspond 

to deletions 
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Examples (cont’d) – 1-state HMMs 

 

• single state, emitting residues with specified freqs: 

  = ‘background’ model 
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Examples (cont’d) – 2-state HMMs 

• if a11 and a22 are small (close to 0), and  

       a12 and a21 are large (close to 1),  

    then get (nearly) periodic model with period 2; e.g.  
– dinucleotide repeat in DNA, or  

– (some) beta strands in proteins.  

• if  a11 and a22 large, and  

        a12 and a21 small,  

    then get models of alternating regions of different 
compositions (specified by emission probabilities), e.g. 
– higher vs. lower G+C content regions (RNA genes in thermophilic 

bacteria); or  

– hydrophobic vs. hydrophilic regions of proteins (e.g. 
transmembrane domains).   
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2-state HMMs 
• Can find most probable state decomposition (‘Viterbi path’) 

consistent with observed sequence 

• Advantages over linked-list dynamic programming method 
(lecture 3) for finding high-scoring segments:  

– That method assumes you know appropriate parameters to find 
targeted regions; HMM method can estimate parameters. 

– HMM (easily) finds multiple segments  

– HMM can attach probabilities to alternative decompositions 

– HMM generalization to > 2 types of segments is easy – just allow 
more states! 

• Disadvantage: 

–  Markov assumption on state transitions implies geometric 
distribution for lengths of regions -- may not be appropriate 
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HMM Probabilities of Sequences 

• Prob of sequence of states 123 ... n is  
  a01

a12
a23

a34 
... an-1n

.  
• Prob of seq of observed symbols b1b2b3 ...  bn,  

     conditional on state sequence is 
e1

(b1)e2
(b2) e3

(b3) ... en
(bn) 

• Joint probability = a01
n

i=1 aii+1 
ei

(bi)  

(define ann+1 
to be 1)

  

• (Unconditional) prob of observed sequence  
= sum (of joint probs) over all possible state paths  

– not practical to compute directly, by ‘brute force’! We will use 
dynamic programming.  
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Computing HMM Probabilities 
• WDAG structure for sequence HMMs:  

– for ith position in seq (i = 1, ... n), have 2 nodes for each 
state:  

• total # nodes = 2ns + 1, where n = seq length, s = # states 

– Pair of nodes for a given state at ith position is connected 
by an emission edge 

• Weight is the emission prob for ith observed residue.  

• Can omit node pair if emission prob = 0. 

– Have transition edges connecting (right-hand) state 
nodes at position i with (left-hand) state nodes at position 
i+1 

• Weights are transition probs 

• Can omit edges with transition prob = 0.  
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WDAG for 3-state HMM,  
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• Paths through graph from begin node to end node 
correspond to sequences of states 

• Product weight along path  
  = joint probability of state sequence & observed symbol sequence 

• Sum of (product) path weights, over all paths,  
  = probability of observed sequence 

• Sum of (product) path weights over  
– all paths going through a particular node, or  

– all paths that include a particular edge,  

    divided by prob of observed sequence,  
 = posterior probability of that edge or node 

• Highest-weight path = highest probability state sequence 
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• By general results on WDAGs, can use dynamic 

programming to find 

– sum of all product path weights  

 = “forward algorithm” for probability of observed sequence 

– highest weight path  

 = “Viterbi algorithm” to find highest probability path 

– sum of all product path weights through particular 

node or particular edge  

 = “forwards/backwards algorithm” to find posterior 

probabilities 



29 

• In each case,  

– compute successively for each node (by increasing 

depth:  left to right)  

• the sum (for forward & forward/backward algorithm), or  

• maximum (for Viterbi algorithm),  

   of the weights of all paths ending at that node.  

– In forwards/backwards approach, work through all 

nodes twice, once in each direction. 

• (N.B. paths are constrained to begin at the begin 

node!) 
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For each vertex v, let f(v) = paths p ending at vweight(p), where 

weight(p) = product of edge weights in p. Only consider paths 

starting at ‘begin’ node. 

Compute f(v) by dynam. prog:       f(v) = iwi f(vi), where                  

vi ranges over the parents of v, and                                                      

wi = weight of the edge from vi to v. 

Similarly for m(v) = maxp ending at v weight(p) 

and for b(v) = p beginning at vweight(p)  

(the paths beginning at v are the ones ending at v in the reverse graph). 



The Viterbi path is  

the most probable parse!  
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• Numerical issues: multiplying many small values can cause 
underflow. Remedies: 
– Scale weights to be close to 1 (affects all paths by same constant 

factor – which can be multiplied back later); or 

– (where possible) use log weights, so can add instead of 
multiplying. 

– see Rabiner & Tobias Mann links on web page  
• & will discuss further in discussion section 

• Complexity: O(|V|+|E|), total # vertices and edges.  
– # nodes = 2ns  + 2 where n = sequence length, s = # states. 

– # edges = (n – 1)s2 + ns + 2s 

– So overall complexity is O(ns2)  
• (actually s2 can be reduced to # ‘allowed’ transitions between states – 

depends on model topology). 
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HMM Parameter Estimation 

• Suppose parameter values (transition & emission 

probs) unknown  

• Need to estimate from set of training sequences 

• Maximum likelihood (ML) estimation (= choice of 

param vals to maximize prob of data) is preferred 

– optimality properties of ML estimates discussed in 

Ewens & Grant 
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Parameter estimation when  

state sequence is known 
• When underlying state sequence for each training sequence 

is known,  

– e.g.: weight matrix; Markov model 

   then ML estimates are given by: 

– emission probabilities:  

ek(b)^ = (# times symbol b emitted by state k) / (# times state k occurs) .  

– transition probabilities:  

akl ^ = (# times state k  followed by state l) / (# times state k occurs) 

– in denominator above, omit occurrence at last position of sequence 
(for transition probabilities) 

• But include it for emission probs 

– can include pseudocounts, to incorporate prior expectations/avoid 
small sample overfitting (Bayesian justification)  
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Parameter estimation when  

state sequences unknown 
• Viterbi training  

1. choose starting parameter values 

2. find highest weight paths (Viterbi) for each sequence 

3. estimate new emission and transition probs as above, 

assuming Viterbi state sequence is true  

4. iterate steps 2 and 3 until convergence  

– not guaranteed to occur – but nearly always does 

5. does not necessarily give ML estimates, but often are 

reasonably good  


