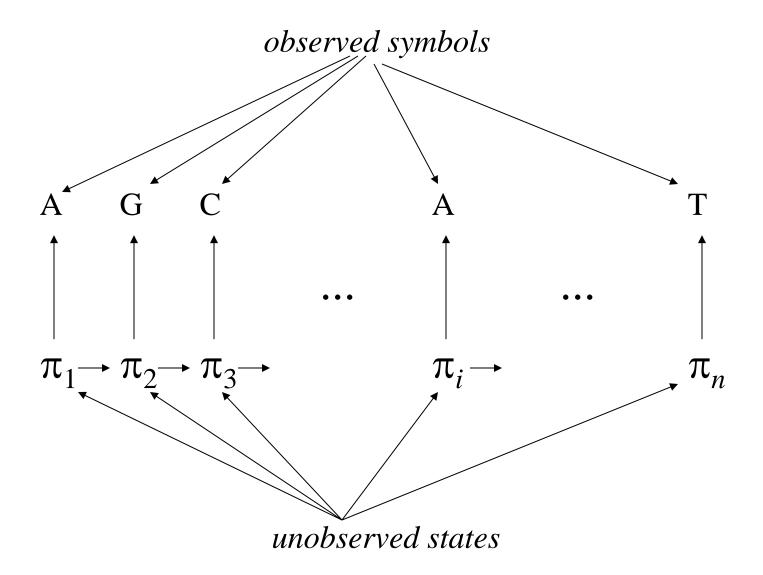
Today's Lecture: HMMs

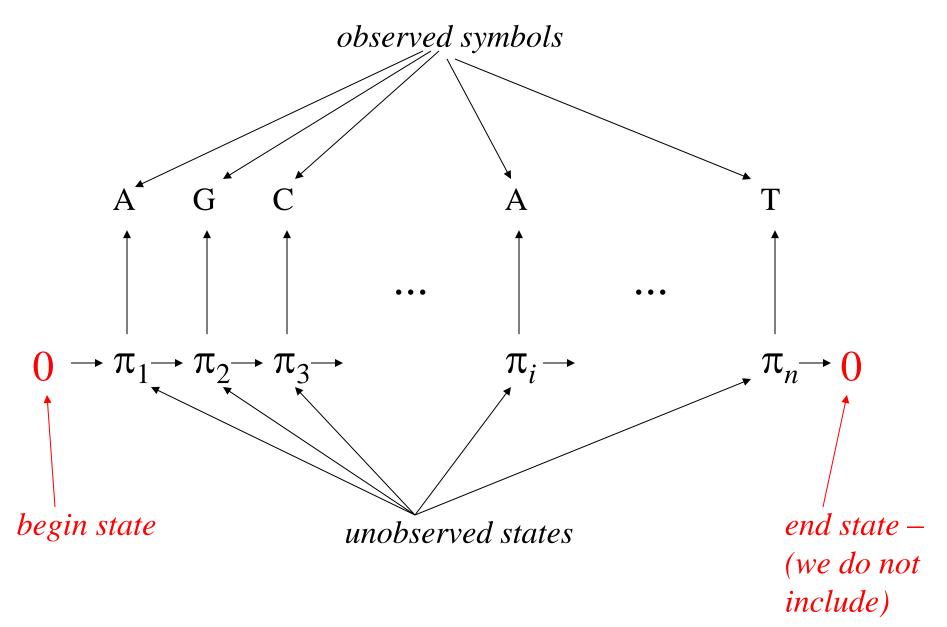
- Definitions
- Examples
- Probability calculations
 - WDAG
 - Dynamic programming algorithms:
 - Forward
 - Viterbi
- Parameter estimation
 - Viterbi training

Hidden Markov Models

- Probability models for sequences of *observed symbols*, e.g.
 - nucleotide or amino acid residues
 - aligned pairs of residues
 - aligned set of residues corresponding to leaves of an underlying evolutionary tree
 - angles in protein chain (structure modelling)
 - sounds (speech recognition)

- Assume a sequence of "hidden" (unobserved) states underlies each observed symbol sequence
- Each state "emits" symbols (one symbol at a time)
- States may correspond to underlying "reality" we are trying to infer, e.g.
 - unobserved biological feature:
 - (positions within) site,
 - coding region of gene
 - rate of evolution
 - protein structural element
 - speech phoneme





Advantages of HMMs

- Flexible –gives reasonably good models in wide variety of situations
- Computationally efficient
- Often interpretable:
 - hidden states can correspond to biological features.
 - can find most probable sequence of hidden states
 - = biological "parsing" of residue sequence.

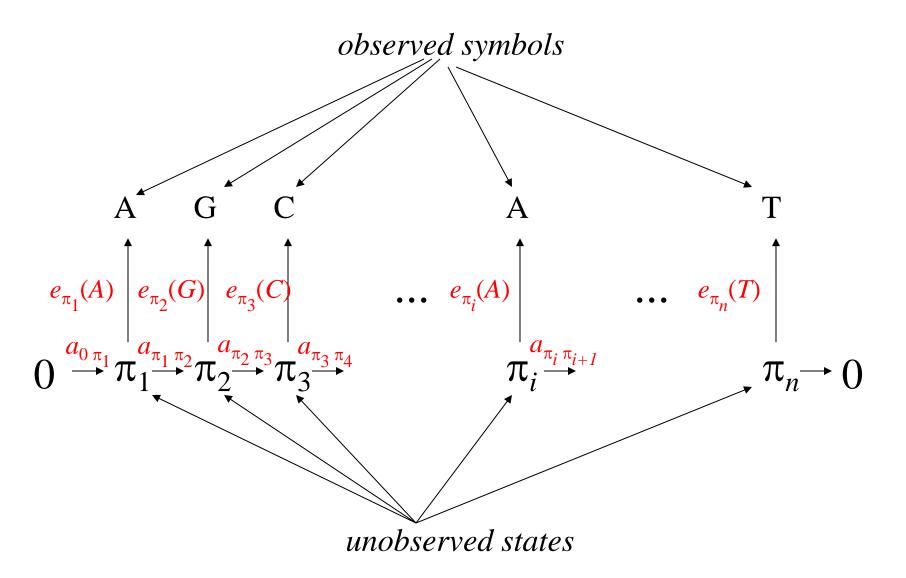
HMMs: Formal Definition

- Alphabet $B = \{b\}$ of *observed symbols*
- Set $S = \{k\}$ of *hidden states* (usually k = 0,1, 2 ..., m; 0 is reserved for "begin" state, and sometimes also an "end" state)
- (Markov chain property): prob of state occurring at given position depends only on immediately preceding state, and is given by

transition probabilities (a_{kl}) : a_{kl} = Prob(next state is $l \mid \text{curr state is } k$) $\sum_{l} a_{kl} = 1$, for each k.

- Usually, many transition probabilities are set to 0.
- Model *topology* is the # of states, and *allowed* (i.e. $a_{kl} \neq 0$) transitions.

Sometimes omit begin state, in which case need *initiation probabilities* (p_k) for sequence starting in a given state



• Prob that symbol occurs at given sequence position depends only on hidden state at that position, and is given by

emission probabilities:

```
e_k(b) = Prob(observed symbol is b \mid curr state is k) (begin and end states do not emit symbols)
```

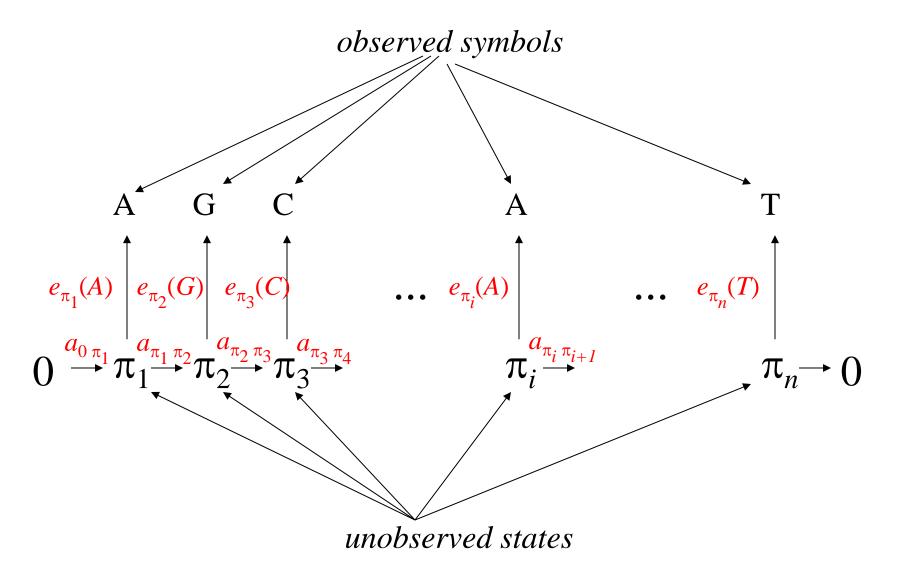
Note that

- there are no *direct* dependencies between observed symbols in the sequence, however
- there are *indirect* dependencies implied by state dependencies

Where do the parameters come from?

- Can either
 - define parameter values a priori, or
 - estimate them from training data (observed sequences of the type to be modelled).
- Usually one does a mixture of both
 - model topology is defined (some transitions set to 0),
 but
 - remaining parameters estimated

Hidden Markov Model



HMM Examples

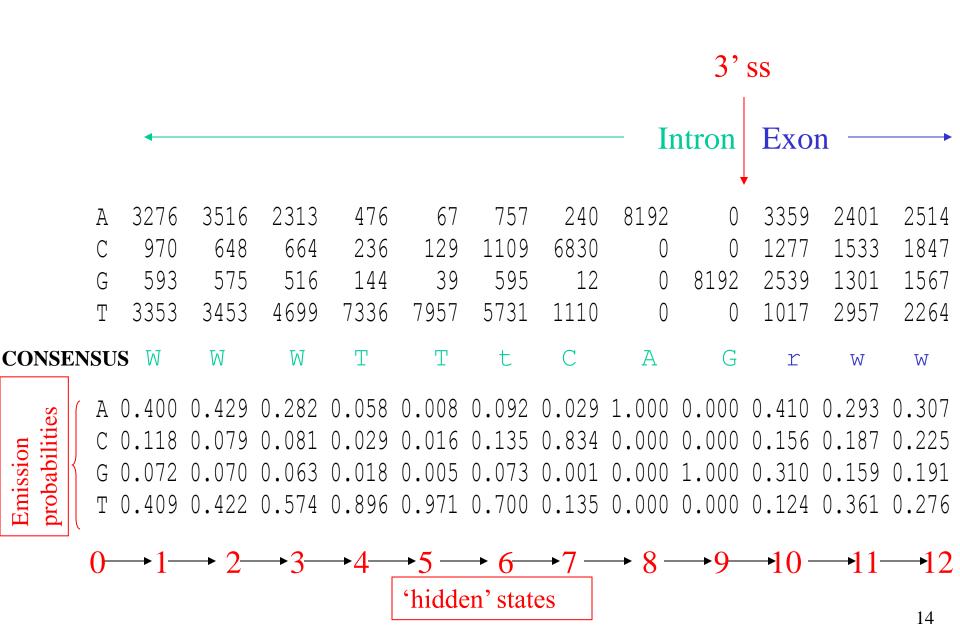
• Site models:

- "states" correspond to positions (columns in the tables). state i transitions only to state i+1:
 - $a_{i,i+1} = 1$ for all i;
 - all other a_{ij} are 0
- emission probabilities are position-specific frequencies:
 values in frequency table columns

Topology for Site HMM: 'allowed' transitions (transits with non-zero prob – all are 1)

$$0 \longrightarrow 1 \longrightarrow 2 \longrightarrow 3 \longrightarrow 4 \longrightarrow 5 \longrightarrow 6 \longrightarrow 7 \longrightarrow 8 \longrightarrow 9 \longrightarrow 10 \longrightarrow 11 \longrightarrow 12 \longrightarrow$$

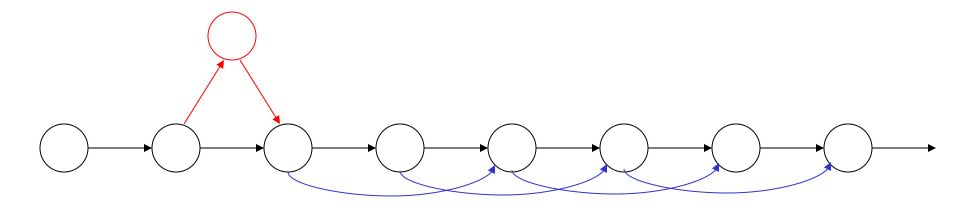
HMM for C. elegans 3' Splice Sites



- Can expand model to allow omission of nuc at some positions by including other (downstream) transitions (or via "silent states")
- Can allow insertions by including additional states.
- transition probabilities no longer necessarily 1 or 0

Insertions & Deletions in Site Model

insertion state



other transitions correspond to deletions

Examples (cont'd) – 1-state HMMs

- single state, emitting residues with specified freqs:
 - = 'background' model

Examples (cont'd) – 2-state HMMs

- if a_{11} and a_{22} are small (close to 0), and a_{12} and a_{21} are large (close to 1), then get (nearly) periodic model with period 2; e.g.
 - dinucleotide repeat in DNA, or
 - (some) beta strands in proteins.
- if a_{11} and a_{22} large, and a_{12} and a_{21} small,
 - then get models of alternating regions of different compositions (specified by emission probabilities), e.g.
 - higher vs. lower G+C content regions (RNA genes in thermophilic bacteria); or
 - hydrophobic vs. hydrophilic regions of proteins (e.g. transmembrane domains).

A A T G C C T G G A T A

G+C-rich state

A+T-rich state

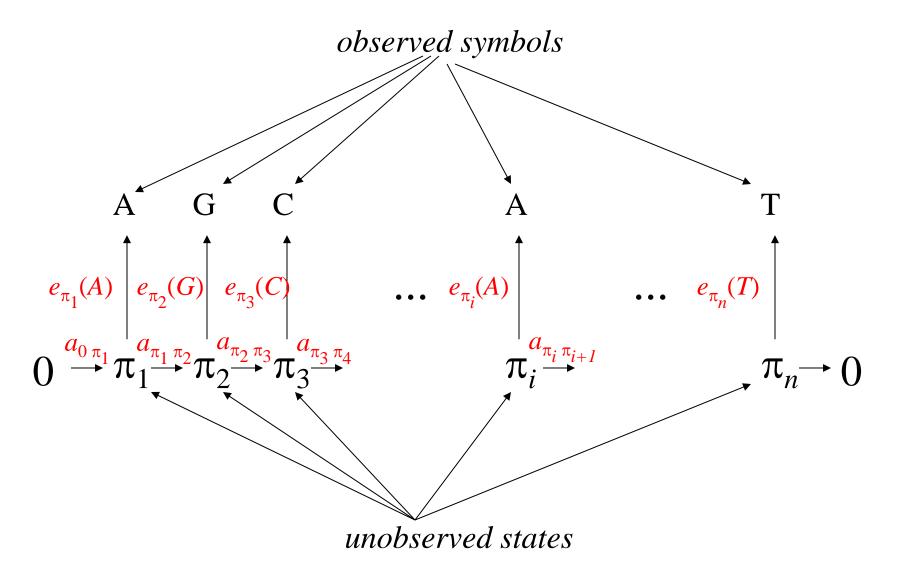
2-state HMMs

- Can find most probable state decomposition ('Viterbi path') consistent with observed sequence
- Advantages over linked-list dynamic programming method (lecture 3) for finding high-scoring segments:
 - That method assumes you *know* appropriate parameters to find targeted regions; HMM method can *estimate* parameters.
 - HMM (easily) finds multiple segments
 - HMM can attach *probabilities* to alternative decompositions
 - HMM generalization to > 2 types of segments is easy just allow more states!

• Disadvantage:

 Markov assumption on state transitions implies geometric distribution for lengths of regions -- may not be appropriate

Hidden Markov Model



HMM Probabilities of Sequences

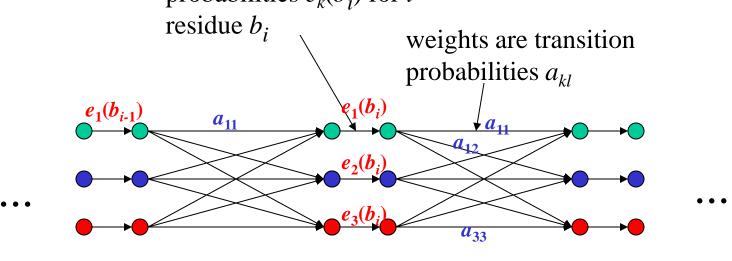
- Prob of sequence of states $\pi_1 \pi_2 \pi_3 \dots \pi_n$ is $a_{0\pi_1} a_{\pi_1 \pi_2} a_{\pi_2 \pi_3} a_{\pi_3 \pi_4} \dots a_{\pi_{n-1} \pi_n}$.
- Prob of seq of observed symbols $b_1b_2b_3 \dots b_n$, conditional on state sequence is $e_{\pi_1}(b_1)e_{\pi_2}(b_2) \ e_{\pi_3}(b_3) \dots e_{\pi_n}(b_n)$
- Joint probability = $a_{0\pi_1} \prod_{i=1}^n a_{\pi_i \pi_{i+1}} e_{\pi_i}(b_i)$ (define $a_{\pi_n \pi_{n+1}}$ to be 1)
- (Unconditional) prob of observed sequence
 - = sum (of joint probs) over all possible state paths
 - not practical to compute directly, by 'brute force'! We will use dynamic programming.

Computing HMM Probabilities

- WDAG structure for sequence HMMs:
 - for i^{th} position in seq (i = 1, ... n), have 2 nodes for each state:
 - total # nodes = 2ns + 1, where n = seq length, s = # states
 - Pair of nodes for a given state at ith position is connected by an *emission* edge
 - Weight is the emission prob for i^{th} observed residue.
 - Can omit node pair if emission prob = 0.
 - Have *transition* edges connecting (right-hand) state
 nodes at position *i* with (left-hand) state nodes at position
 i+1
 - Weights are transition probs
 - Can omit edges with transition prob = 0.

WDAG for 3-state HMM, length *n* sequence

weights are emission probabilities $e_k(b_i)$ for i^{th} residue b_i

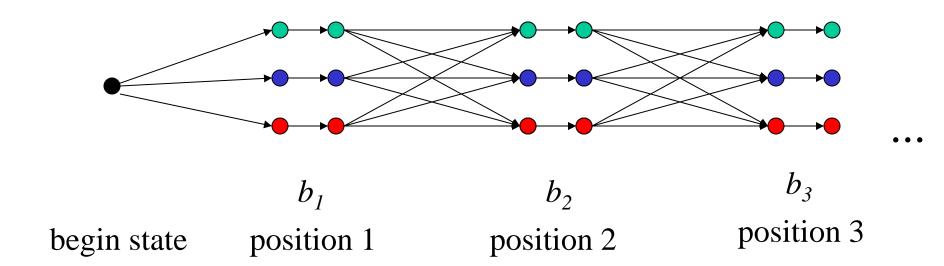


 b_{i-1} position i-1

 b_i position i

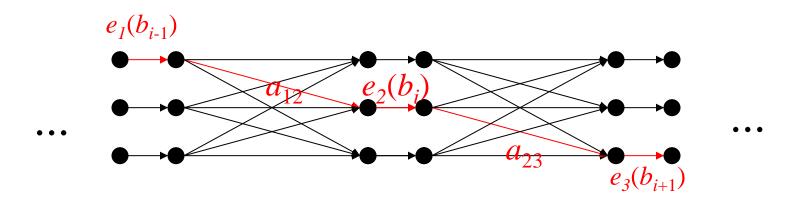
 b_{i+1} position i+1

Beginning of Graph



- *Paths* through graph from begin node to end node correspond to *sequences of states*
- **Product weight** along path
 - = *joint probability* of state sequence & observed symbol sequence
- Sum of (product) path weights, over all paths,
 - = probability of observed sequence
- Sum of (product) path weights over
 - all paths going through a particular node, or
 - all paths that include a particular edge,
 - divided by prob of observed sequence,
 - = *posterior probability* of that edge or node
- *Highest-weight path* = *highest probability state sequence*

Path Weights



position *i*-1

position i

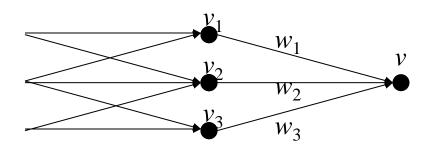
position i+1

- By general results on WDAGs, can use dynamic programming to find
 - sum of all product path weights
 - = "forward algorithm" for probability of observed sequence
 - highest weight path
 - = "Viterbi algorithm" to find highest probability path
 - sum of all product path weights through particular node or particular edge
 - = "forwards/backwards algorithm" to find posterior probabilities

- In each case,
 - compute successively for each node (by increasing depth: left to right)
 - the sum (for forward & forward/backward algorithm), or
 - maximum (for Viterbi algorithm),
 - of the weights of all paths ending at that node.
 - In forwards/backwards approach, work through all nodes twice, once in each direction.
- (N.B. paths are constrained to begin at the begin node!)

For each vertex v, let $f(v) = \sum_{\text{paths } p \text{ ending at } v} \text{weight}(p)$, where weight(p) = product of edge weights in p. Only consider paths starting at 'begin' node.

Compute f(v) by dynam. prog: $f(v) = \sum_i w_i f(v_i)$, where v_i ranges over the parents of v, and w_i = weight of the edge from v_i to v.



Similarly for $m(v) = \max_{p \text{ ending at } v} \text{weight}(p)$ and for $b(v) = \sum_{p \text{ beginning at } v} \text{weight}(p)$

(the paths beginning at v are the ones ending at v in the reverse graph).

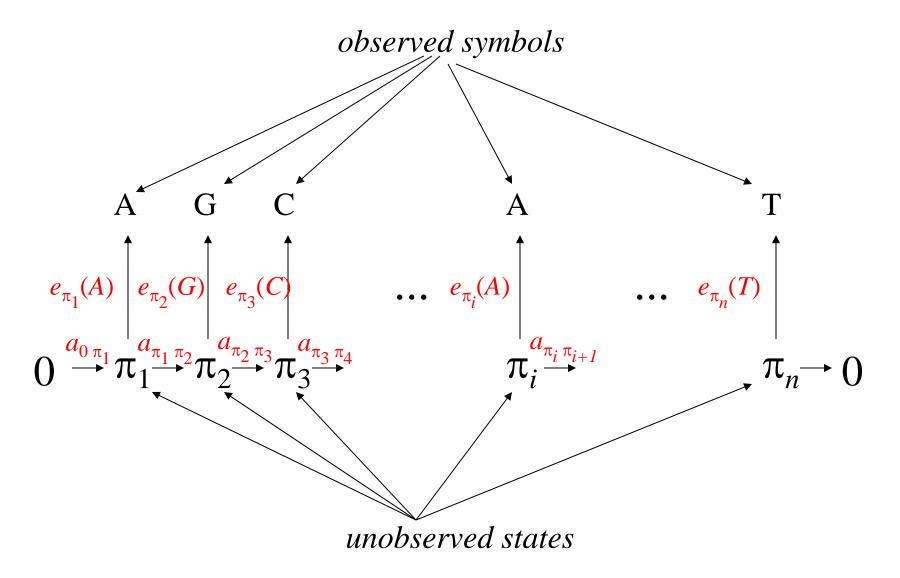
The Viterbi path is the most probable parse!

- Numerical issues: multiplying many small values can cause underflow. Remedies:
 - Scale weights to be close to 1 (affects all paths by same constant factor which can be multiplied back later); or
 - (where possible) use log weights, so can add instead of multiplying.
 - see Rabiner & Tobias Mann links on web page
 - & will discuss further in discussion section
- Complexity: O(|V|+|E|), total # vertices and edges.
 - # nodes = 2ns + 2 where n = sequence length, s = # states.
 - $\# edges = (n-1)s^2 + ns + 2s$
 - So overall complexity is $O(ns^2)$
 - (actually s^2 can be reduced to # 'allowed' transitions between states depends on model topology).

HMM Parameter Estimation

- Suppose parameter values (transition & emission probs) unknown
- Need to estimate from set of training sequences
- *Maximum likelihood* (ML) estimation (= choice of param vals to maximize prob of data) is preferred
 - optimality properties of ML estimates discussed in Ewens & Grant

Hidden Markov Model



Parameter estimation when state sequence is known

- When underlying state sequence for each training sequence is *known*,
 - e.g.: weight matrix; Markov model

then ML estimates are given by:

- emission probabilities:
 - $e_k(b)^{\wedge} = (\# \text{ times symbol } b \text{ emitted by state } k) / (\# \text{ times state } k \text{ occurs})$.
- transition probabilities:
 - $a_{kl} = (\text{# times state } k \text{ followed by state } l) / (\text{# times state } k \text{ occurs})$
- in denominator above, omit occurrence at last position of sequence (for transition probabilities)
 - But include it for emission probs
- can include pseudocounts, to incorporate prior expectations/avoid small sample overfitting (Bayesian justification)

Parameter estimation when state sequences *unknown*

Viterbi training

- 1. choose starting parameter values
- 2. find highest weight paths (Viterbi) for each sequence
- 3. estimate new emission and transition probs as above, assuming Viterbi state sequence is true
- 4. iterate steps 2 and 3 until convergence
 - not guaranteed to occur but nearly always does
- 5. does *not* necessarily give ML estimates, but often are reasonably good