
Today’s Lecture 

 

• Review of 

– HMM probability calculations 

– Viterbi training 

 

• Forward & forward/backward algorithms 

 

• Baum-Welch training 
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Hidden Markov Model 
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HMM Probabilities of Sequences 

• Prob of sequence of states 123 ... n is  
  a01

a12
a23

a34 
... an-1n

.  
• Prob of seq of observed symbols b1b2b3 ...  bn,  

     conditional on state sequence is 
e1

(b1)e2
(b2) e3

(b3) ... en
(bn) 

• Joint probability = a01
n

i=1 aii+1 
ei

(bi)  

(define ann+1 
to be 1)

  

• (Unconditional) prob of observed sequence  
= sum (of joint probs) over all possible state paths  

– not practical to compute directly, by ‘brute force’! We will use 
dynamic programming.  
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WDAG for 3-state HMM,  

length n sequence 
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weights are emission 

probabilities ek(bi) for ith 

residue bi weights are transition 

probabilities akl 
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• Paths through graph from begin node to end node 
correspond to sequences of states 

• Product weight along path  
  = joint probability of state sequence & observed symbol sequence 

• Sum of (product) path weights, over all paths,  
  = probability of observed sequence 

• Sum of (product) path weights over  
– all paths going through a particular node, or  

– all paths that include a particular edge,  

    divided by prob of observed sequence,  
 = posterior probability of that edge or node 

• Highest-weight path = highest probability state sequence 
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position i  position i+1 position i-1  

... ... 

Path Weights 
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• By general results on WDAGs, can use dynamic 

programming to find highest weight path:  

–  = “Viterbi algorithm” to find highest probability path 

(most probable “parse”) 

– in this case can use log probabilities  & sum weights 
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HMM Parameter Estimation 

• Suppose parameter values (transition & emission 

probs) unknown  

• Need to estimate from set of training sequences 

• Maximum likelihood (ML) estimation (= choice of 

param vals to maximize prob of data) is preferred 

– optimality properties of ML estimates discussed in 

Ewens & Grant 



9 

Parameter estimation when  

state sequence is known 
• When underlying state sequence for each training sequence 

is known,  

– e.g.: weight matrix; Markov model 

   then ML estimates are given by: 

– emission probabilities:  

ek(b)^ = (# times symbol b emitted by state k) / (# times state k occurs) .  

– transition probabilities:  

akl ^ = (# times state k  followed by state l) / (# times state k occurs) 

– in denominator above, omit occurrence at last position of sequence 
(for transition probabilities) 

• But include it for emission probs 

– can include pseudocounts, to incorporate prior expectations/avoid 
small sample overfitting (Bayesian justification)  
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Parameter estimation when  

state sequences unknown 
• Viterbi training  

1. choose starting parameter values 

2. find highest weight paths (Viterbi) for each sequence 

3. estimate new emission and transition probs as above, 

assuming Viterbi state sequence is true  

4. iterate steps 2 and 3 until convergence  

– not guaranteed to occur – but nearly always does 

5. does not necessarily give ML estimates, but often are 

reasonably good  
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More algorithms!! 

• Can also use dynamic programming to find 

– sum of all product path weights  

 = “forward algorithm” for probability of observed sequence 

– sum of all product path weights through particular 

node or particular edge  

 = “forward/backward algorithm” to find posterior 

probabilities 

• Now must use product weights and non-log-

transformed probabilities 

– Because need to add probabilities 
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• In each case, compute successively for each 

node (by increasing depth:  left to right) 

– the sum of the weights of all paths ending at that 

node.  

– N.B. paths are constrained to begin at the begin 

node! 

• In forward/backward algorithm,  

– work through all nodes a second time, in opposite 

direction 

• i.e. in reverse graph – constraining paths to start in 

rightmost column of nodes 
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For each vertex v, let f(v) = paths p ending at vweight(p), where 

weight(p) = product of edge weights in p. Only consider paths 

starting at ‘begin’ node. 

Compute f(v) by dynam. prog:       f(v) = iwi f(vi), where                  

vi ranges over the parents of v, and                                                      

wi = weight of the edge from vi to v. 

Similarly for b(v) = p beginning at vweight(p)  

The paths beginning at v are the ones ending at v in the reverse (or inverted) 

graph 
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WDAG for 3-state HMM,  

length n sequence 

position i  position i+1 position i-1  

weights are emission 

probabilities ek(bi) for ith 

residue bi weights are transition 

probabilities akl 

... ... 

    bi-1 
bi bi+1 

e1(bi) 

e2(bi) 

e3(bi) 

a11 
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w 
v’ v 

f(v)b(v) = sum of the path weights of all paths through v.  

f(v’) 
f(v) b(v) 

f(v’)wb(v) = sum of the path weights of all paths through the 

edge (v’,v) 

 



• Work through graph in forward direction:  

– compute and store f(v) 

• Then work through graph in backward direction: 

–  compute b(v) 

– compute f(v) b(v) and f(v)wb(v)  as above, store in 

appropriate cumulative sums 

– only need to store b(v) until have computed b’s at 

next position 

• Posterior probability of being in state s at 

position i is f(v) b(v) / total sequence prob  

– where v is the corresponding graph node 
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Forward/backward algorithm 
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• Numerical issues: multiplying many small values can cause 
underflow. Remedies: 
– Scale weights to be close to 1 (affects all paths by same constant 

factor – which can be multiplied back later); or 

– (where possible) use log weights, so can add instead of 
multiplying. 

– see Rabiner & Tobias Mann links on web page  
• & will discuss further in discussion section 

• Complexity: O(|V|+|E|), total # vertices and edges.  
– # nodes = 2ns  + 2 where n = sequence length, s = # states. 

– # edges = (n – 1)s2 + ns + 2s 

– So overall complexity is O(ns2)  
• (actually s2 can be reduced to # ‘allowed’ transitions between states – 

depends on model topology). 
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• Special case of EM (‘expectation-maximization’) 

algorithm  

• like Viterbi training, but  

– uses all paths, each weighted by its probability  

    rather than just highest probability path.  

• sometimes give significantly better results than 

Viterbi  

– e.g. for PFAM 

 

Baum-Welch training 


