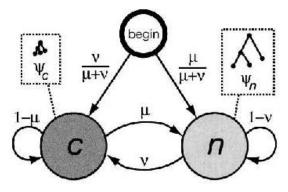
Today's Lecture

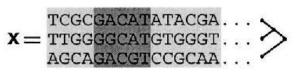
• PhastCons

• Karlin-Altschul theory

Notation

- $\mu = a_{cn}$, $\omega = 1/\mu$ (expected length of conserved elt)
- $v = a_{nc}$
- expected 'coverage' γ (frac of genome that is conserved):
 - = Elen (cons seg) / (Elen(cons seg) + (Elen(neut seg))
 - $= (1/\mu) / (1/\mu + 1/\nu)$
 - $= \nu / (\mu + \nu)$





- L_{\min} : expected min length of a conserved segment that could appear in a Viterbi path
- at L_{\min} ,

expected loglike of staying in state n

= expected loglike of switching to c & back again, so

$$(L_{\min}+1)\log(1-\nu)+L_{\min}\sum_{x}P(x|\psi_{c})\log P(x|\psi_{n})$$

$$= \log \nu + \log \mu + (L_{\min} - 1) \log(1 - \mu) + L_{\min} \sum_{x} P(x|\boldsymbol{\psi}_{c}) \log P(x|\boldsymbol{\psi}_{c})$$

•
$$L_{\min} = \frac{\log \nu + \log \mu - \log(1 - \nu) - \log(1 - \mu)}{\log(1 - \nu) - \log(1 - \mu) - H(\psi_c || \psi_n)}$$

• where $H(\psi_c || \psi_n) = \sum_x P(x | \psi_c) \log \frac{P(x | \psi_c)}{P(x | \psi_n)}$ = rel entropy of *c*-state emission prob dist'n w.r.t. *n*-state dist'n

• PIT (phylogenetic information threshold) = $L_{\min}H(\psi_c || \psi_n)$:

= 'expected min amt of phylogenetic info required to predict conserved element'

- Final param estimates (for vertebrates):
 - $-\gamma = 0.265$
 - $-\omega = 12.0 \text{ bp}$
 - $-H(\psi_{\rm c} \parallel \psi_{\rm n}) = .608$ bits / site
 - $-L_{\min} = 16.1 \text{ bp}$
 - $\text{PIT} = L_{\min} H(\psi_c || \psi_n) = 9.8 \text{ bits}$

Group	Method	Total no. ^{a}	Ave. len. ^b	Cov. ^c	$CDS \text{ cov.}^{d}$	μ	ν	ω	γ	L_{\min}
	MLE	561,103	216.1	4.2%	68.8%	0.018	0.004	55.4	0.191	-30.4
	55%	1,058,855	75.3	2.8%	56.8%	0.125	0.029	8.0	0.187	-12.9
vert.	$65\%^{c}$	1,157,180	103.5	4.2%	66.1%	0.083	0.030	12.0	0.265	-16.0
	75%	1,381,978	167.5	8.1%	76.6%	0.043	0.031	23.0	0.415	22.6
Group	Method	Total no. ^{a}	Ave. len. ^b	$Cov.^{c}$	CDS cov. ^a	l = CDS	S frac. ^{e}	$H(\boldsymbol{\psi}_{c}$	$ \psi_n angle$	L_{\min}
vert.	65%	1,157,180	103.5	4.2%	66.1%	5	18.0%		0.611	16.0
	4d	797,777	109.3	3.0%	64.2%	,)	24.0%		0.854	11.0

Estimating false positive rates

- simulate 1 Mb alignment
 - by sampling 4D sites (with replacement) from aligned CDSs
 - caveat: these not typical of all neutral sites!
- predict cons elts (using prev param estimates)
- frac of bases in cons elts:

Group	65%	75%	MLE
vertebrate	0.00279^{a}	0.00362	0.00005
insect	0.00286	0.01026	0.00152
worm	0.00000	0.00000	0.00000
yeast	0.00006	0.00042	0.00023

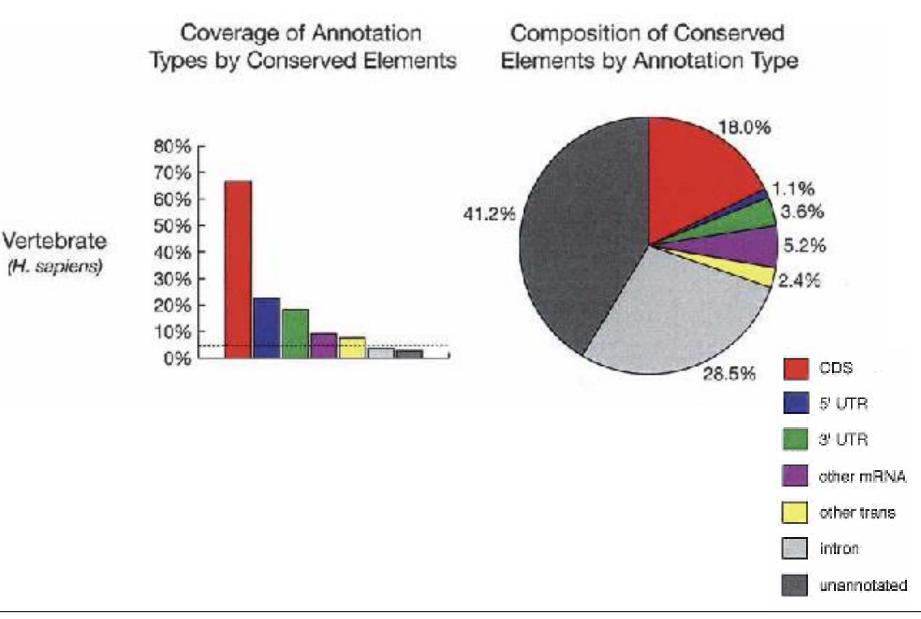
- does not address (important) issue of rate of false positive bases within, or flanking, true conserved elements
- also: genes more G+C rich than genome average, & have somewhat higher mutation rate (due in part to more frequent CpGs)

 \Rightarrow *underestimating* false pos rate

- also: randomization procedure destroys underlying mutation rate variation
 - \Rightarrow *underestimating* false pos rate

Characteristics of phastCons predicted conserved elements

- 1.18 million elements
- constitute 4.3% of human sequence
 - 66% of coding bases
 - 88% of coding exons overlap predicted elt
 - 23% of 5'UTR bases
 - 63% of exons
 - 18% of 3'UTR bases
 - 64% of exons
 - 42% of RNA gene bases
 - 56% of genes
 - 3.6% of intronic bases
 - 2.7% of intergenic bases
 - < 1% of mammalian 'ancestral repeats' (ARs)



from Siepel A. et al. (2005). Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes. Genome Res. 15:1034-50.

Context for Karlin-Altschul Theory for Maximal Segment Analysis

- Linked list, with labels attached to edges, e.g.
 - a sequence graph: labels = sequence residues
 - (ungapped) aligned pair of seqs: labels = possible alignment columns (pairs of residues)
- edge weights depend only on labels:
 - each label is assigned a weight $W(s) = w_s$

• in backgd model, each label *s* occurs with probability $P(s) = p_s$ where

-P = prob dist'n on sample space $S = \{$ labels $\}$

Methods for Computing Statistical Significance of Maximal Segment Scores

- 1. exact prob dist'n
- 2. approximate formula (Karlin-Altschul)
- 3. from simulated sequences
- 4. from real biological 'background' sequences
 - i.e. not having feature in question
- 1, 2, 3 require prob model approximating biological reality; 4 requires an appropriate dataset
- 2 is faster than 1 or 3, but involves add'l approximations (ignores 'edge effects')
- 1 requires more complex algorithm

Exact Score Dist'n for Segments in WLLs

- Exact score dist'n (following proof allows position-specific scores and probabilities):
 - Let $P_{k,m}^{(i)}$ = prob that :
 - highest-scoring path ending at position i has score k, and also
 - highest scoring path *ending at any pos'n* $\leq i$ has score *m*
 - special cases:
 - $P_{k,m}^{(i)} = 0$ if k < 0 or m < k;
 - $P_{0,0}^{(0)} = 1$,
 - $P_{k,m}^{(0)} = 0$ if *k* or $m \neq 0$
 - dist'n of maximum score is $P_m = \sum_{k \le m} P_{k,m}^{(N)}$. (N = seq length)

- Algorithm to compute $\{P_{k,m}^{(i)}\}$ from $\{P_{k,m}^{(i-1)}\}$: - If 0 < k < m
 - (\Rightarrow best path ending at position *i* cannot start at *i*, and best path ending at position $\le i 1$ must have score = m)

then
$$P_{k,m}^{(i)} = \sum_{j} p_j^{(i)} P_{k-j,m}^{(i-1)}$$

- if $0 < k = m$

• (\Rightarrow best path ending at position $\le i - 1$ may have score $\le m$)

then
$$P_{k,m}^{(i)} = \sum_{j} p_j^{(i)} \sum_{n \le m} P_{k-j,n}^{(i-1)}$$

 $- P_{0,m}^{(i)} = \sum_{j} p_j^{(i)} \sum_{n \le -j} P_{n,m}^{(i-1)}$
 $-$ stop when *i* reaches *N*

- Can incorporate Markov chain dependencies in sequence probs:
 - just keep track of preceding residue *r* as well as k,m: $P_{r,k,m}^{(i)}$.
- Reduce required memory by truncating for large *m*, with appropriate modifications.
- Would like to have generalization to arbitrary DAG (e.g. edit graphs for sequence alignment)!
 - Difficult, because $P_{k,m}^{(v)}$ not independent for different parent vertices v

Why Is *Approximation* to Exact Score Distribution of Interest?

- faster to compute: useful for database searches
- gives better intuition for score behavior
- *Form* of approximation extends to other situations e.g. gapped alignments

where exact dist'n currently unavailable

Approximate Score Distribution for High-Scoring Segments in WLLs: Karlin-Altschul theory

- Main reason why BLAST is most widely used computational biology tool!
- Ideas closely related to
 - classical random walk and gambler's ruin problems in probability theory
 - (cf. W. Feller, An Introduction to Probability Theory and Its Applications),
 - sequential sampling in statistics

Karlin-Altschul Theory

- Scoring systems: What is appropriate scoring system (choice of edge weights) for detecting 'target' features in a biological sequence?
 - Answer: if symbol r occurs with freq
 - t_r in target segments, and
 - *b_r* elsewhere ('background')

the best score is

$$s_r = \log(t_r / b_r)$$

- N.B. requires knowing (approximately) these frequencies!
- Moreover, any 'interesting' scoring system can be expressed in above form

• Statistical Significance:

Expected # maximal segs of score \geq S in 'backgd' sequence is

where

- $-\lambda$ is a scaling factor to convert scores to LLR scale,
- N = sequence length
- K is constant (depends on scoring system, but not on S or N)
- (Is above also true for maximal D-segments?)

Scoring systems (Choice of edge weights in WLLs):

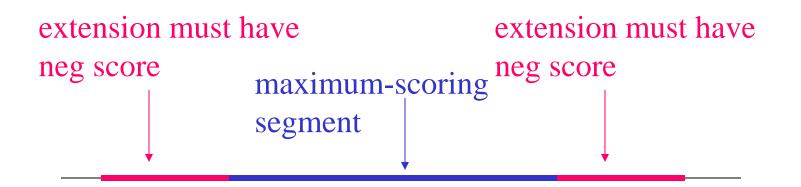
- assume *position independent* scores w, probabilities p_w
- reasonable constraints on weights are
 - at least one score is > 0:
 - if none are, then maximal scoring paths have score 0 & are trivial;
 - expected score is < 0:
 - if ≥ 0, then maximal scoring paths in random seqs will tend to extend through entire sequence
 - more suitable for 'global' than 'local' analyses
- above constraints ⇔ can assume weights are scaled LLRs (will show later)

- Can *choose* prob dist'ns *P*, *Q*, to optimize discrimination of regions to be detected (*like* an LLR test):
 - *P* corresponds to backgd dist'n
 - *sequence graph*: average composition of sequences being scanned
 - *pairwise alignment*: random pairs of residues
 - -Q corresponds to target dist'n
 - sequence graph: composition of regions to be detected e.g. to detect hydrophobic regions in protein, use residue freqs in observed hydrophobic regions
 - *pairwise alignment*: homologous residue pairs in evolutionarily related sequences

Example where LLR weights *aren't* a natural choice: quality trimming of sequencing reads

- assume have error probs for base calls:
 - e_i = error prob for *i*-th base call in read, 1≤*i*≤*N* where *N* = read length
- want to trim read to that part having error rate ≤ a specified target rate
 - e.g. .05
- construct linked-list directed graph with *N* edges, & set $w_i = .05 - e_i$ as weight on *i*-th edge
- highest weight path in graph has property that any segment extending path has negative score

- i.e. avg error rate in extension > .05.



Scores on Probability Spaces

- A *scoring system* on a prob space (S,P) is function W: $S \rightarrow \mathbf{R}$ (\mathbf{R} = real numbers).
 - W(s) is called the *score* (or *weight*) of *s*.
- Example: for any prob dist'n $Q \neq P$ on *S*, the LLR score $W(s) = \log_b(Q(s)/P(s))$.

This has properties (writing p_s , q_s , w_s for P(s), Q(s), W(s))

- 1. $w_s > 0$ for at least one *s*
 - otherwise $q_s \le p_s$ for all *s*, and $q_s < p_s$ for at least one *s* since $Q \ne P$; but then $\sum_s q_s < \sum_s p_s = 1$, so *Q* is not a probability distribution.
- 2. $\sum_{s} p_{s} w_{s} < 0$ (by the information inequality)

- above properties also hold for "scaled" LLR $\log_b(q_s/p_s) / \lambda$ where $\lambda > 0$.
- conversely, any scoring system W satisfying above two properties is of form log_b(q_s/p_s) / λ, for a unique λ and Q (λ depends on b):
 - *Proof*: Take b = e for convenience. λW is a LLR $\Leftrightarrow e^{\lambda w_s} = q_s / p_s$ for some prob dist'n Q $\Leftrightarrow \sum_s p_s e^{\lambda w_s} = 1$

∴ if define

$$f(\lambda) = \sum_{s} p_{s} e^{\lambda w_{s}}$$

then it is enough to show $f(\lambda) = 1$ for a unique $\lambda > 0$, because can then take

$$q_s = p_s e^{\lambda w_s}$$

- $f(\lambda) = 1$ for $\lambda = 0$, $f(\lambda) > 0$ for all λ
- the derivative $f'(\lambda) = \sum_{s} p_{s} w_{s} e^{\lambda w_{s}}$, so $f'(0) = \sum p_{s} w_{s} < 0$, i.e. f decreasing at 0
- $\therefore \exists \mu > 0 \text{ with } f(\mu) < f(0) = 1$
- $f(\lambda) \rightarrow \infty$ as $\lambda \rightarrow \infty$ since by assumption some $w_s > 0$
- $\therefore f(\lambda) = 1$ for some $\lambda > \mu > 0$
- f is convex
 - i.e. for any λ_1 and λ_2 , line segment from the point $(\lambda_1, f(\lambda_1))$ to $(\lambda_2, f(\lambda_2))$ lies above graph of $f(\lambda)$

since its terms $p_s e^{\lambda w_s}$ are convex,

- $\therefore \exists \text{ at most one } \lambda > 0 \text{ with } f(\lambda) = 1$
 - otherwise graph would have ≥ 3 points on line y = 1
- this completes the proof.

Karlin-Altschul theory (cont'd)

• expected # of maximal segments with scores $\geq a$, in 'bkgd' sequence of length N is

NKe^{-λa}

- where λ , *K* are constants depending on scoring system
 - λ (as discussed previously) rescales scores to be LLRs
- method assumes sequence is very long
 - i.e. doesn't allow for "edge effects"

Intuition (not a proof!) for K-A formula

- Consider the space of sequences of a *fixed length* $n \le N$
 - (think of these as the possible subsequences of length *n* starting at a particular location within a larger sequence of length *N*.
- Assume LLR scoring system ($\lambda = 1$):
 - score(s) = log(Q(s) / P(s)), for any sequence s of length n, where
 - *P* = backgd dist'n
 - Q =target dist'n

Intuition cont'd

What is the total probability of all sequences of score ≥ a?

 $\log(Q(s) / P(s)) \ge a$ $\Rightarrow Q(s) / P(s) \ge e^{a}$ $\Rightarrow P(s) \le e^{-a} Q(s)$

Summing over all such s:

 $\Sigma_s P(s) \le e^{-a} \Sigma_s Q(s) = k e^{-a} = k e^{-\lambda a}$ for some $k \le 1$

Intuition cont'd

• (Very) roughly speaking, averaging over possible sequence lengths $n \le N$, and summing over the *N* possible start points within a sequence of length *N*, get $NKe^{-\lambda a}$

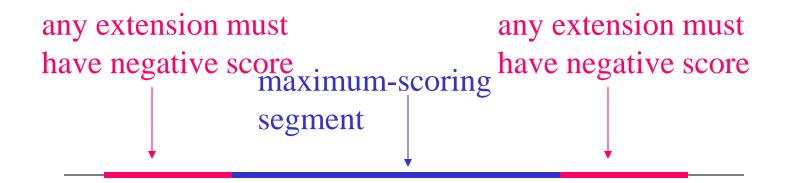
• A better (but still incomplete) argument is given in the following slides.

Scores on Probability Spaces (cont'd)

- convenient to
 - assume W takes on integral values
 - rescale and round
 - (loss of precision can be made as small as desired by taking scaling factor large enough);
 - replace original prob space by one induced on the integers by the random variable W so
 - the sample points are integers
 - prob associated to the integer k is $\sum_{s:w_s=k} p_s$
 - the weight function is now the identity

- i.e. weight associated to k is k.

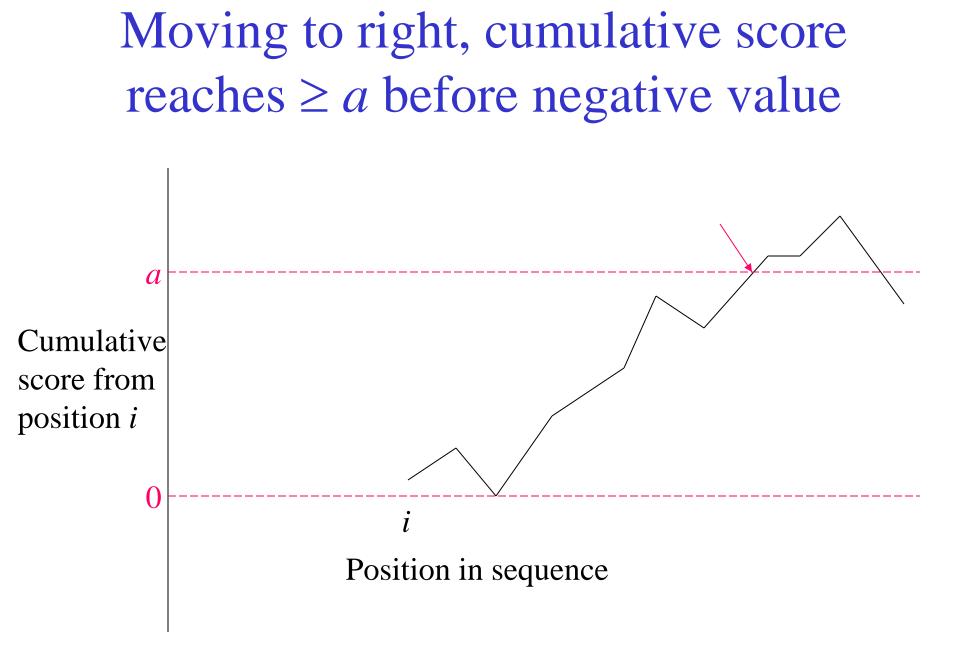
Maximal Segments



- want prob that maximal segment of score $\geq a$ starts at position *i*
- this requires two *independent* events to occur:
 - 1. cumulative score
 - starting from value of 0 and
 - adding successive scores while moving to the right from pos'n *i*,

must reach value $\geq a$ before reaching value < 0.

Call prob of this P_1



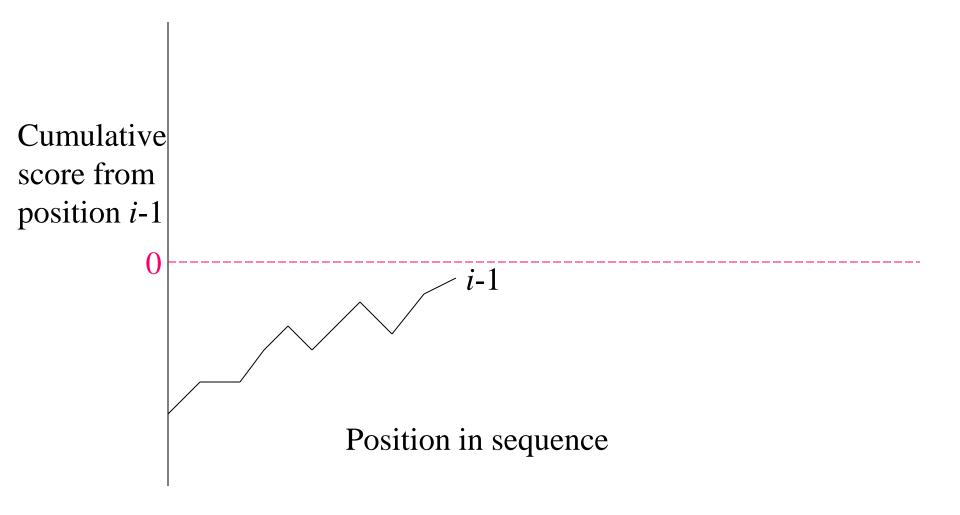
- 2. for any j < i, score of segment from j to i 1 is < 0Equivalently,
 - starting from score 0 and
 - adding successive scores while moving to *left* from pos'n i 1
 - (and not resetting neg scores to 0)

the score remains < 0. This requires that

- the score k at position i 1 is negative
- cumulative score moving from i 1 leftward never gets back to 0 from k

Call prob of this P_2

Moving to left, cumul score always < 0



Analogy to random walk/gambler's ruin

- cumulative score, counting from particular position in sequence, corresponds to
 - total distance walked, or
 - gambler's net worth
- with each step having probability p_k of moving distance k
 - -k positive \Rightarrow forwards
 - k negative \Rightarrow backwards
- *stop* when reach
 - value < 0 (out of money!); or</pre>
 - value $\geq a$

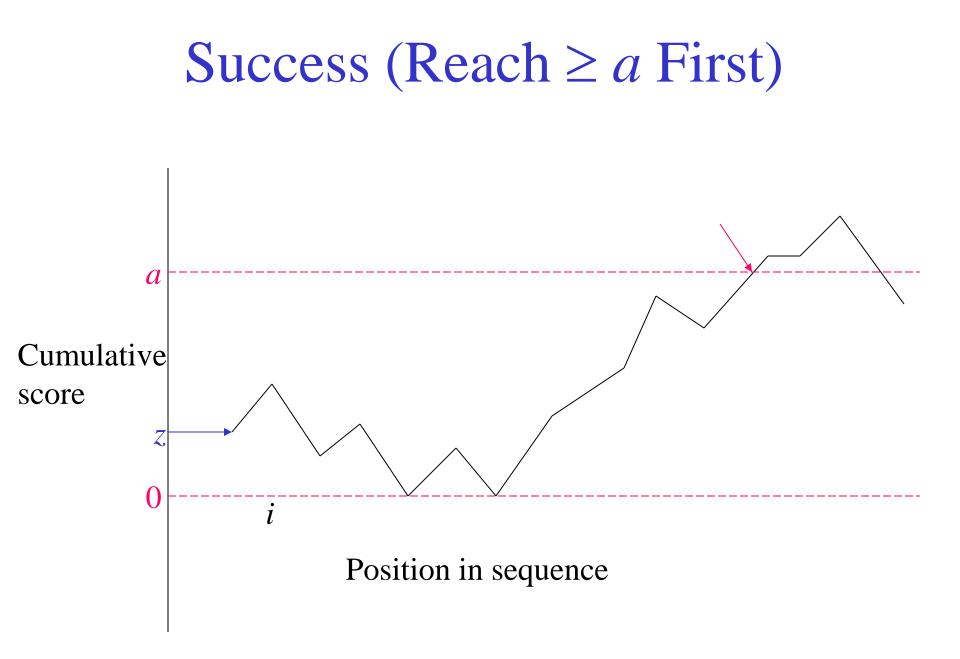
"random walk with absorbing barriers at 0 and a"

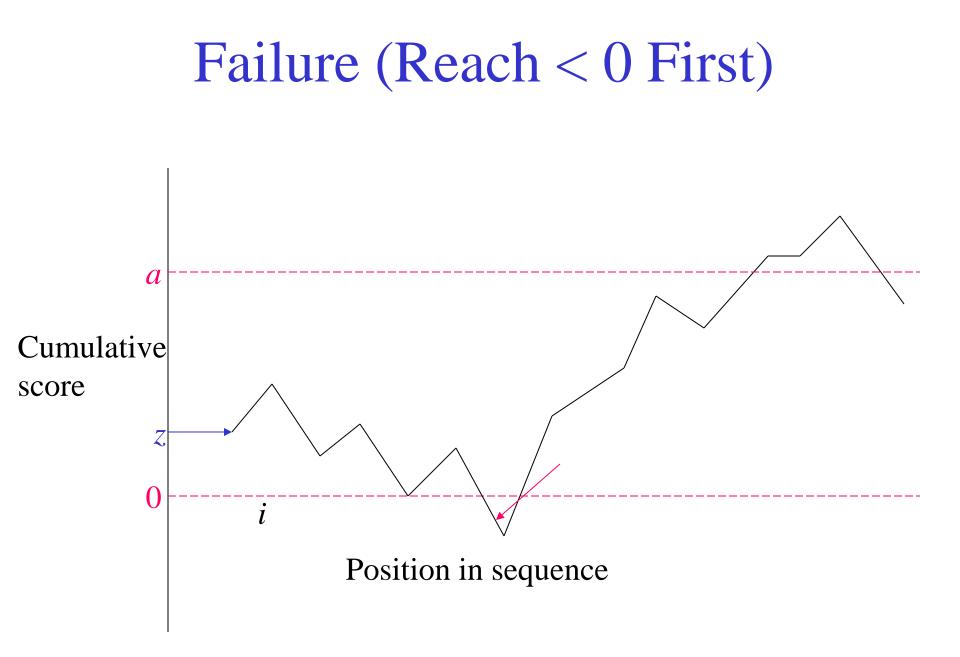
estimate P₁ and P₂ and *multiply* (since cond'ns are independent) to get

prob (max segment of score $\geq a$ starts at *i*)

Estimating P_1

- consider a more general situation:
 - assume start with score = z (an integer) instead of 0,
 - again consider cum score moving to right from position i
 - what is prob u_z of getting to target score $\ge a$ before getting to < 0?
- $P_1 = u_0$





Non-rigorous derivation

- intuition (*not a proof*!) for why P_1 should be approximately $e^{-\lambda a}$:
 - for any a > b, let
 - P(a | b) = prob that, starting from cumul score = b, eventually reach cumul score a
 - (*ignoring* whether drop below 0 first which is one reason why this isn't a proof!)

Then

- $P(a \mid b) = P(a b \mid 0)$
- $P(a + a' \mid 0) = P(a' \mid 0) P(a + a' \mid a') = P(a' \mid 0) P(a \mid 0)$

∴ the function a → P (a | 0)
takes sums to products
∴ P (a | 0) = e^{-μa} for some μ

What is μ ?

Consider first step, starting at 0: prob it has size k is p_k Considering all possible sizes of 1st step: $P(a \mid 0) = \sum_{k} p_{k} P(a \mid k) = \sum_{k} p_{k} P(a - k \mid 0)$ $\Rightarrow e^{-\mu a} = \sum_{k} p_{k} e^{-\mu (a-k)}$ \Rightarrow (cancelling $e^{-\mu a}$) $1 = \sum_{k} p_{k} e^{\mu k}$ $\Rightarrow \mu = \lambda$ (by definition of λ) $\Rightarrow \mathsf{P}(a \mid 0) = e^{-\lambda a}$