
Today’s Lecture 

 

• Information theory 
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Information Theory 

• Gives useful concepts & terminology for describing 

how much “better” one probability model is than 

another.  

• Gives interesting way to think about 2d law of 

thermodynamics 

• Important in coding theory / data compression 

• Suggests a useful approach (Minimum Description 

Length principle) to avoid overfitting data 
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From   http://www-lmmb.ncifcrf.gov/~toms/sequencelogo.html 

http://www-lmmb.ncifcrf.gov/~toms/sequencelogo.html
http://www-lmmb.ncifcrf.gov/~toms/sequencelogo.html
http://www-lmmb.ncifcrf.gov/~toms/sequencelogo.html
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Entropy 

• The information theoretic entropy  

– or Shannon entropy  

    of a probability space (S,P) is  

 

    Hb(P) = sSP(s)logb(1/P(s)) = sSP(s)logb(P(s)) 

 

– Terms with  P(s) = 0 are set = 0 

– We usually take b = 2  

• in which case entropy is in “bits”  

• Hb(P)  0 
• because each term P(s)logb(1/P(s))  0  

Hb(P) = 0 only for trivial dist’n concentrated in single point  
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Entropy (cont’d) 

• Intuitively, the entropy measures how “spread out” 

the probability distribution is.  

– for P(s) close to 0, or to 1, P(s)logb(1/P(s)) is close to 0.  
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Relative Entropy 

• The relative entropy or Kullback-Leibler distance 
for two dist’ns P and Q on S is  
            Db(P || Q)  sSP(s)logb(P(s) / Q(s)) 
(the expected value of the loglikelihood ratio).  

– if P(s) = 0, set corresponding term = 0  

– if P(s)  0 but Q(s) = 0, Db(P || Q) is taken to be +. 

• By information inequality, Db(P || Q)  0, with 
equality only if P = Q.  

• In general  
                    Db(P || Q)  Db(Q || P) 
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Information Inequality 

 (Let ps = P(s), for s  S). For any  

– prob dist’n {ps}sS , and  

– {qs}sS satisfying qs  0 and s qs  1  

• e.g. {qs} a probability distribution 

   we have 

                     s ps ln(qs)  s ps ln(ps)  

    with equality only if  qs = ps for all s (‘ s’) 
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 Proof.  ln(x)  x – 1 for all x > 0,  with equality only 

for x = 1. (See next slide).  

    s ps ln(qs) - ps ln(ps) = s ps ln(qs / ps)  

           s ps (qs / ps – 1) (with equality only if qs =  ps s)  

              = s qs – s ps   1 – 1 = 0. 

   So s ps ln(qs)  s ps ln(ps), with equality only if    

    qs = ps  s. 
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ln(x)  x - 1 

y = x - 1 

y = ln(x) 
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Information Inequality (cont’d) 

• Since logb for any base b is related to ln by 

              logb (x) = ln(x)/ln(b)  

    the information inequality holds for logb as well:  

                s ps logb(qs)  s ps logb(ps)  

• Equivalent formulation: the entropy Hb({ps}) 

satisfies 

Hb({ps}) = s ps logb(ps)  s ps logb(qs) = s pslogb(1/qs) 

for any dist’n {qs}. 
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Distributions with Maximum Entropy 

• For a sample space with n elements,  

– largest possible entropy (of any prob dist’n) is logb(n), 

and  

– this attained only for prob dist’n qs = 1/n for each s : 

• Proof. Take arbitrary prob dist’n {ps}, and {qs} as 

above. Then  

Hb({ps})  s ps logb(1/qs)  = s ps logb(n) = logb(n)  

and 

Hb({qs}) = s qs logb(1/qs)  = s qs logb(n) = logb(n) 
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Maximum Entropy Subject to 

Constraint: Boltzmann Distribution 

• In physics,  

– S may correspond to the fixed set of states of a physical system,  

– the prob dist’n P = {ps}sS may vary, subject to a constraint of the 
form  
                  s ps E(s) = E  
where E and {E(s)} are fixed (e.g. the expected energy of the 
system, and the energies of individual states respectively).  

– Note that     

       minsE(s) = tS pt (minsE(s))  t pt E(t)  t pt maxsE(s) = maxsE(s).  
So (since the middle term = E)  
                        minsE(s)  E  maxsE(s) 

• We seek {ps} constrained as above for which the entropy 
H({ps}) is maximized. 
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Boltzmann Distribution (cont’d) 
• Consider {qs} = {qs

(r)} of the form qs = cre
-rE(s) where r is a 

constant and cr = 1/ (se
-rE(s) ) is determined by the 

requirement that {qs} be a prob dist’n.  

• We first want to show that there exists an r such that {qs
(r)} 

satisfies the above constraint on p, i.e. s qs
(r) E(s) = E 

• Write qs
(r)

 = cre
-rE(s) = cr

 e-r (min E(s)) e-r (E(s)-min E(s)).  As  

     r  +, the last factor e-r (E(s)-min E(s)) 

    = 1 if E(s) = minsE(s) 

     0 if E(s)  minsE(s) since then the exponent of e becomes large 
and negative.   

• Consequently {qs
(r)} converges to a dist’n {qs

()} which 
satisfies qs

() = 0 for any s for which E(s)  mins E(s). Then 
s qs

() E(s) = mins E(s). 
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Boltzmann Distribution (cont’d) 

• By a similar argument, as r  – , {qs
(r)} converges to a 

dist’n {qs
(-)} which satisfies qs

(-) = 0 for any s for which 
E(s)  maxs E(s); and s qs

(-) E(s) = maxs E(s). 

• Therefore since s qs
(r) E(s) is continuous in r it takes on 

all values between minsE(s) and maxsE(s). In particular 
minsE(s)  E  maxsE(s), so we can find a value of  r such 
that   
                       s qs

(r) E(s) = E 
i.e. {qs

(r)} satisfies the constraint. 

• Then by the information inequality and the constraint on 
{ps},  
     H ({ps})    s pslog (1/qs)  =  s ps (r E(s) - log(cr))  
                            = r E - log(cr) 
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Boltzmann Distribution (cont’d) 

• But also H ({qs
(r)})  =  s qs

(r)log (1/qs
(r))   

    =  s qs
(r)

 (r E(s) - log(cr))  = r E - log(cr)  H ({ps})  

 

• So {qs} of the form qs = cre
-rE(s) (for an appropriate r 

which we have not computed explicitly!) has the maximum 

entropy of all prob dist’ns {ps} satisfying the constraint  

s ps E(s) = E.  

• For this distribution, the probability associated to the state 

s declines exponentially in E(s). This is sometimes called 

the Boltzmann distribution, after its discoverer in the 

context of classical thermodynamics. 
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Basic Coding Theory/ 

Data Compression 

• a binary source code for a prob space (S,P) is a 

mapping C: S  {strings of 0’s and 1’s} 

–  C(s) is called the codeword corresponding to s. 

• Given C, and any “text” or string s1s2 ··· sn of 

elements in S  

– si  S for each i  

   can create an encoded string C(s1)C(s2) ··· C(sn) (of 

0’s and 1’s)  

– i.e. replace each si by its codeword.   
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Uniquely Decodable Codes 

• C is uniquely decodable if distinct strings from S 

always give distinct encoded strings  

 can uniquely reconstruct the original message from the 

encoded message 

• C is a prefix code or instantaneous code if no 

codeword is a prefix of any other codeword. 
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• Examples: let S have three elements: 1,2,3. Then 

– C(1) = 001, C(2) = 1, C(3) = 01 is a prefix code on S.  

– C(1) = 0, C(2) = 1, C(3) = 01 is not a prefix code, 

because C(1) is a prefix of C(3). 

• Is it uniquely decodable? 

– Is C(1) = 001, C(2) = 1, C(3) = 10 a prefix code?  

• Is it uniquely decodable? 

– ASCII 8-bit code for representing alphabet & symbols is 

prefix code  

• because all codewords have same length! 

• UTF-8 is variable-width (one to four bytes) encoding of 

Unicode characters that includes ASCII & is a prefix code 
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• Prefix codes are uniquely decodable:  

– can decode the prefix-coded text by  

• reading through it in order, and  

• replacing each codeword by its corresponding s as soon as its 

end is recognized (whence “instantaneous”).  

• For other types of uniquely decodable codes, may 

need to read whole text before decoding is possible. 
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Codewords as Paths 
• Codewords correspond to paths from root in a full  binary rooted tree 

of sufficient depth.  

– Each such path is uniquely determined by its end node.  

• Code is a prefix code  no end node is ancestor or descendant of any 
other end node: 

0 

0 

0 0 0 0 

0 

1 

1 

1 1 1 1 

1 

The three codewords are 001, 01, and 1 
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• Codewords in a prefix code are like the series of 

yes-no answers to “20 questions”, that uniquely 

determine a particular sS 
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Code Lengths 

• For a code C, let lC(s) = length of C(s), for sS.  

• Equivalently, lC(s) = depth of the end node vs of the 

corresponding path. 
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Kraft Inequality 

• Let l(s) assign positive integer to each s  S. Then  

                 l = lC  for some prefix code C  

                          sS 2
-l(s)  1  

 

• Example: let S = {a,b,c}. Then can the following 
correspond to prefix codes? 

– l(a) = 1, l(b) = 1, l(c) = 1  ? 

– l(a) = 1, l(b) = 1, l(c) = 2  ? 

– l(a) = 1, l(b) = 2, l(c) = 2  ? 
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Proof of Kraft inequality 

0 

0 

0 0 0 0 

0 

1 

1 

1 1 1 1 

1 

0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 

1 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

  

Consider full binary rooted tree of depth n  maxsS l(s).  

 Number leaves (= nodes of depth n) consecutively from 
left to right starting with 1: 
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– For each node v in the tree, if depth(v) = m then  

• v has 2n-m descendants among the 2n leaves; and  

• these are numbered consecutively from c to d, such that d is 
divisible by 2n-m  

– Conversely, 

    a set of 2n-m leaves consecutively numbered from c to d,  
  & such that d is divisible by 2n-m  

    is the set of depth n descendants for a unique node v of 
depth m. 

– If neither v1 and v2 is an ancestor of the other, then  

   descendants of v1 and v2 are disjoint sets.  

Proof of Kraft inequality (cont’d) 
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Proof of Kraft inequality (cont’d) 

: Assume l = lC  for a prefix code C.  

• C a prefix code  end nodes vs for the 

corresponding paths have disjoint sets of 

descendants 

• Since vs has 2n-l(s) descendants in nth row, 

sS 2
n-l(s)  2n .  

• Cancelling 2n , get sS 2
-l(s)  1. 



27 

: Conversely suppose sS 2
-l(s)  1.  

• Then sS 2
n-l(s)  2n.  

• Arrange l(s)’s in increasing order 

• Choose successive contiguous subsets Vs among 
leaves, starting from far left, such that |Vs |= 2n-l(s).  

• Each such subset = {depth n descendants} for a unique 
node vs in the tree, with  
depth(vs ) = l(s).  

• The mapping s  vs then defines a prefix code C with 
l = lC  

Proof of Kraft inequality (cont’d) 
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Entropy & Expected Code Length 

• The expected length L(C) of a code C is given by 

                    L(C) =  s ps lC(s) 

i.e. the expected value of the random variable lC 

• L(C) = “expected # yes-no questions necessary to 

specify sS using C” 

     = avg # bits needed to encode a “character” 

sS, for text where each s used with freq ps 
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Entropy & Expected Code Length 

(cont’d) 

• For any prefix code, L(C)  H2(P): 

Proof. Define qs = 2-l(s) .   

– from Kraft inequality, sS qs
  1, so  

– apply information inequality: 

  
  H2({ps})  s pslog2(1/qs) = s ps l(s) = L(C) 
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• Conversely, can find prefix code C such that  
L(C) < H2(P) + 1: 

Proof. Let l(s) = smallest integer  log2(1/ ps).  

– Then 2-l(s)  ps , so sS 2
-l(s)  s ps = 1.  

– By Kraft inequality  prefix code C with l = lC  
Then  

L(C)  H2(P) = s ps (l(s) - log2(1/ ps)) < s ps (1) = 1 
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– N.B.  

• C chosen as above (the Shannon code) need not be 
optimal, in sense of having lowest possible L(C).  

• A construction of an optimal code is due to Huffman. 
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Interpretation of Entropy 

•  H2(P) is (approximately!) the expected code 

length for an optimal prefix encoding of the 

probability space (S, P) 
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Uniquely Decodable Codes (cont’d) 

• All uniquely decodable codes C satisfy Kraft inequality  

– for proof, see e.g. Cover & Thomas, Elements of Information 

Theory, sec. 5.5. 

• Therefore  prefix code D with the same codeword lengths 

as C: 

                lC(s) = lD(s) for all s  S. 

•  expected codeword length L(C) is same as for optimal 

prefix code 

• in particular  

 L(C) =  s ps lC(s)  H2(P). 
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•  H2(P)  minimum avg # bits (0’s and 

1’s),  needed per character sS to encode 

texts 

– for the best possible uniquely decodable code.  

– the relation becomes exact if more general 

codes (arbitrary invertible maps from texts to 

bit strings) are allowed 
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Entropy and Information 
• By above, H2(P)  # bits needed “on average” to 

unambiguously specify elements of S. 

•  Entropy = average “uncertainty” before an 
element of (S,P) is specified. 

• Information corresponds to reduction in 
uncertainty.  

– Before elt of S is specified, the uncertainty is H(P);  

– after it is specified, uncertainty is 0.  

– So the amount of information gained is H(P) – 0 = 
H(P).  

– So entropy happens to equal information in this 
instance;  

• not in general though! 
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• So H2(P) = avg amount of information per 

character in a text based on (S, P). 
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Minimum Description Length Principle 

(MDL) 

• Method for choosing among probability models 

– suggested by coding theory & parsimony principle 

(Occam’s razor) 

– intent is to avoid overfitting 

• idea: minimize total # bits needed to describe data, 

including bits necessary to represent the model 

(parameter values)  

•  ‘best’ model for data is one with minimum # bits 
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MDL  

– Avg # bits needed to represent data, given model:  

              Bdata = H2(P) = sSP(s)log2(1/P(s)) (i.e. entropy) 

• to represent a specific dataset s, given the prob model P:  

            log2(1/ P(s)) =  log2(P(s)) bits  

– (Shannon encoding – which is close to optimal) 

– # bits needed to specify model:  

           Bparam    (# parameters)  precision 

• some non-trivial issues here: can be many possible ways of 

‘specifying’ parameters! 

– Minimize Bdata + Bparam over prob models & precisions 

       maximizing the (adjusted) relative entropy.  
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Avoiding overfitting – other approaches 

• Most methods to avoid overfitting involve similar 

tradeoff:  

– in choosing among models, balance 

• goodness of fit to training data 

               against 

• penalty for complexity of the model 

• Other such methods (besides MDL) include: 

– AIC (Akaike information criterion) 

– BIC (Bayesian information criterion) 
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• A different, commonly used approach: 

– train multiple models on the ‘training’ data 

– then choose one that does best on separate (‘test’) data 

• This is wrong: test data is being used for training !! 

– ‘training’ is any procedure for choosing among models,  

   not only ‘estimating parameters’ (a particular type of 
choice) 

    So still  major risk of overfitting 

• Can hold out part of test set for final, indep test 

– but performance in final test likely not as good 
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Relative Entropy 

• The relative entropy or Kullback-Leibler distance 
for two dist’ns P and Q on S is  
            Db(P || Q)  sSP(s)logb(P(s) / Q(s)) 
(the expected value of the loglikelihood ratio).  

– if P(s) = 0, set corresponding term = 0  

– if P(s)  0 but Q(s) = 0, Db(P || Q) is taken to be +. 

• By information inequality, Db(P || Q)  0, with 
equality only if P = Q.  

• In general  
                    Db(P || Q)  Db(Q || P) 
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• For site dist’n P and background dist’n Q,  

– D(P || Q) = the mean of site score distribution 

i.e. the sum, over sequences, of prob of seq times its LLR 

weight. 

• Since                          and                         ,  
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3’ Splice Sites – C. elegans 

0

0.2

0.4

0.6

0.8

1

1.2

A

C

G

T

Exon  Intron 

Branch site “smear” 



44 

Weight Matrix – 3’ Splice Sites 

(C. elegans) 

SITE FREQUENCIES: 
A  0.400  0.429  0.282  0.058  0.008  0.092  0.029  1.000  0.000  0.410  0.293  0.307  

C  0.118  0.079  0.081  0.029  0.016  0.135  0.834  0.000  0.000  0.156  0.187  0.225  

G  0.072  0.070  0.063  0.018  0.005  0.073  0.001  0.000  1.000  0.310  0.159  0.191  

T  0.409  0.422  0.574  0.896  0.971  0.700  0.135  0.000  0.000  0.124  0.361  0.276  

 

BACKGROUND FREQUENCIES: 
A  0.321  0.321  0.321  0.321  0.321  0.321  0.321  0.321  0.321  0.321  0.321  0.321  

C  0.179  0.179  0.179  0.179  0.179  0.179  0.179  0.179  0.179  0.179  0.179  0.179  

G  0.179  0.179  0.179  0.179  0.179  0.179  0.179  0.179  0.179  0.179  0.179  0.179  

T  0.321  0.321  0.321  0.321  0.321  0.321  0.321  0.321  0.321  0.321  0.321  0.321  

 

 

 

WEIGHTS: 
A   0.32   0.42  -0.18  -2.46  -5.29  -1.79  -3.45   1.64 -99.00   0.36  -0.13  -0.06  

C  -0.60  -1.18  -1.15  -2.64  -3.51  -0.41   2.22 -99.00 -99.00  -0.20   0.06   0.33  

G  -1.31  -1.35  -1.51  -3.35  -5.23  -1.30  -6.93 -99.00   2.48   0.79  -0.17   0.10  

T   0.35   0.39   0.84   1.48   1.60   1.12  -1.24 -99.00 -99.00  -1.37   0.17  -0.22  
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3’ Splice Sites  

WEIGHTS: 

A   0.32   0.42  -0.18  -2.46  -5.29  -1.79  -3.45   1.64 -99.00   0.36  -0.13  -0.06  

C  -0.60  -1.18  -1.15  -2.64  -3.51  -0.41   2.22 -99.00 -99.00  -0.20   0.06   0.33  

G  -1.31  -1.35  -1.51  -3.35  -5.23  -1.30  -6.93 -99.00   2.48   0.79  -0.17   0.10  

T   0.35   0.39   0.84   1.48   1.60   1.12  -1.24 -99.00 -99.00  -1.37   0.17  -0.22  

 

Position-specific Relative Entropy: 

    0.11   0.16   0.24   1.05   1.43   0.47   1.57   1.64   2.48   0.19   0.01   0.01  

 

e.g. 0.11 = .400 (.32) + .118 (-.60) + .072 (-1.31) + .409 (.35) 

 

Total Relative Entropy (Sum of position-specific values) = 9.35 
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• Note pos-specific relative entropy always  0  

= 0 only if site freqs exactly equal backgd freqs. 

• will rarely happen, even far from site (when we’re in 
backgd).  

• So rel entropy increases indefinitely as window 
size increases  

– even when no biological information being added. 

• For large enough window get spuriously clean 
score separation between training seqs and other 
seqs  

– overfitting. 
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Position-Specific Relative Entropy:  

 3’ Splice Sites 
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1 bit 

2 bits 

3 bits 

branch site 
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Predicted vs. Observed Distributions 

(3’ site model): True 3’ Sites 

0

0.02

0.04

0.06

0.08

0.1
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True 3' Predicted

Relative entropy: 10.85 bits 
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• Similarly,  

 

        Db(Q || P) = sSQ(s)logb(Q(s) / P(s))  

                         = - sSQ(s)logb(P(s) / Q(s))  

 

= negative of the mean of the dist’n of the LLR 

scores in background sequence (the “null 

distribution”);  

– but must eliminate s for which  P(s) = 0. 
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Predicted vs. Observed Distributions 

(3’ site model):  

(Simulated) Random Independent 
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Sequence Logos 

• Schneider and Stephens (NAR 18, 6097-6100, 1990)– see  
   http://www-lmmb.ncifcrf.gov/~toms/sequencelogo.html 

• At ith position, each residue r gets height            
 Pi(r)D(Pi || Qi) 

• Schneider  

– takes Qi to be the equal-frequency model 

– subtracts small-sample correction from D(Pi || Qi) 

•  Gorodkin, Heyer, Brunak and Stormo (CABIO 13, 583-
586, 1997)  

– use unequal frequency Qi 

– allow for gaps 

– take height either proportional to Pi(r) (as above) or to  
Pi(r)/ Qi(r), letter upside down if Pi(r) < Qi(r). 

http://www-lmmb.ncifcrf.gov/~toms/sequencelogo.html
http://www-lmmb.ncifcrf.gov/~toms/sequencelogo.html
http://www-lmmb.ncifcrf.gov/~toms/sequencelogo.html
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From   http://www-lmmb.ncifcrf.gov/~toms/sequencelogo.html 

http://www-lmmb.ncifcrf.gov/~toms/sequencelogo.html
http://www-lmmb.ncifcrf.gov/~toms/sequencelogo.html
http://www-lmmb.ncifcrf.gov/~toms/sequencelogo.html
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from  http://www.dna-dna.net/ 

from  http://gibk26.bse.kyutech.ac.jp 
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From   http://www-lmmb.ncifcrf.gov/~toms/sequencelogo.html 

http://www-lmmb.ncifcrf.gov/~toms/sequencelogo.html
http://www-lmmb.ncifcrf.gov/~toms/sequencelogo.html
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Position-Specific Relative Entropy:  

 C. elegans 5’ Splice Sites 
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Position-Specific Relative Entropy:  

 3’ Splice Sites 
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