Today's Lecture

Finding multiple high-scoring segments

- "D-segments"
 - relationship to 2-state HMMs

Sequence alignment & evolution

Maximal Segment Analysis – Definitions

- let $\{s_i\}$, i = 1,...,N be sequence of real nos.
 - e.g. scores assigned to
 - residues in a DNA or protein sequence, or
 - columns in an alignment
- *segment* is set of integers of the form $[d,e] = \{i \mid d \le i \le e\}$ where $1 \le d \le e \le N$.
- score of [d,e] is $\sum_{i=d}^{e} s_i$

- A maximal(-scoring) segment I is one such that
 - − P1: no subsegment of I has a higher score than I
 - -P2: no segment properly containing I satisfies P1

• Example:

score = 75, but does not satisfy P1

Maximal segments – from cumulative score plot (without 0 resets)

• Can find *all* maximal segs of score ≥ S using following practical (but non-optimal) algorithm:

```
cumul = max = 0; start = 1;
for (i = 1; i \le N; i++)
    cumul += s[i];
    if (cumul \geq max)
         \{\max = \text{cumul}; \text{end} = i; \}
    if (\text{cumul} \le 0 \text{ or } i == N) {
         if (\max \geq S)
            {print start, end, max; i = end; } /* N.B. MUST BACKTRACK! */
         max = cumul = 0; start = end = i + 1;
```


- In worst case this is $O(N^2)$ (because of backtracking),
 - but in practice usually O(N) because a given base is usually traversed at most twice
- Ruzzo-Tompa algorithm guarantees O(N)

- undesirable aspect of maximal segments as so defined:
 - single maximal seg may contain two (or more) highscoring regions, separated by significant negativescoring regions
 - i.e. two possibly biologically distinct target occurrences get merged into one maximal segment

• Example:

A better problem!

- to avoid this, have max allowed 'dropoff' D < 0
- *D-segment* is segment without any subsegments of score < D
- maximal D-segment is D-segment I such that
 - P1: no subsegment of I has higher score than I
 - P2: no D-segment properly containing I satisfies P1
- Problem: given $S (\ge -D)$, find all maximal D-segs of score $\ge S$
 - (algorithm fails if S < -D)

Maximal D-segments

• O(N) algorithm to find all maximal D-segs:

```
cumul = max = 0; start = 1;
for (i = 1; i \le N; i++)
    cumul += s[i];
    if (cumul \geq max)
         \{\max = \text{cum}; \text{end} = i;\}
    if (\text{cumul} \le 0 \text{ or cumul} \le \text{max} + D \text{ or } i == N)
         if (max \ge S)
            {print start, end, max; }
         max = cumul = 0; start = end = i + 1; /* NO BACKTRACKING
           NEEDED! */
```

- So more biologically relevant problem is also computationally simpler!
- what are appropriate S and D?
 - mainly an empirical question (based on known examples); altho
 - interpretation via 2-state HMM (next slide) can be useful
 - Karlin-Altschul theory tells when they are 'statistically significant'

D-segments & 2-state HMMs

- Consider 2-state HMM
 - states 1 & 2, transition probs a_{11} , a_{12} , a_{21} , a_{22}
 - observed symbols $\{r\}$, emission probs $\{e_1(r)\}$, $\{e_2(r)\}$
- Define

```
scores s(r) = \log(e_2(r) \ a_{22}/(e_1(r) \ a_{11}))
S = -D = \log(a_{11}a_{22}/(a_{21}a_{12}))
```

- Then if S > 0, the maximal D-segments in a sequence $(r_i)_{i=1,n}$ are the state-2 segments in the Viterbi parse.
- So via D-segment algorithm can get Viterbi parse in just one pass through the sequence!
- can allow for non-.5 initiation probs by starting cumul at non-zero value

- For HW 3, implement D-segment algorithm to find CNVs
 - data: next-gen read alignments to genome
 - observed symbols are counts of # read starts at each position $(0, 1, 2, \ge 3)$
 - 2 states: non-dup, dup (dup has twice as many read starts per base as non-dup state)
 - emission probs given by Poisson dist'n with approp mean
 - transition probs set empirically

CNVs & Read Depth

- CNV = 'copy number variant' e.g. region that is single copy in reference sequence but duplicated in sample
- One way to detect: map reads from sample onto reference, look for regions of atypical coverage depth

'Single-copy' in sample and reference	multi-copy in sample
	
	

D-Segments – concluding remarks

- Powerful tool for analyzing 'linear' data
 - Single sequences
 - Fixed alignment
- Strengths:
 - Very simple to program
 - Very fast, even for mammalian genomes
- Main limitation:
 - Only allows two types of segments ('target' and 'background')
 - Essentially a generalization of 2-state HMMs
 - multi-state HMMs are more flexible

Aligning sequences

- Major uses in genome analysis:
 - To find relationship between sequences from "same" genome
 - (still need to allow for discrepancies due to errors/polymorphisms)

E.g.

- finding gene structure by aligning cDNA to genome
- assembling sequence reads in genome sequencing project
- NextGen applications: "Resequencing", ChIPSeq, etc
- To detect evolutionary relationships:
 - illuminates function of distantly related sequences under selection
 - finds corresponding positions in neutrally evolving sequence
 - to illuminate mutation process
 - helps find non-neutrally evolving (functional) regions

- Often we're interested in details of alignment
 (i.e. precisely which residues are aligned),
 - but
- sometimes only interested in whether alignment score is large enough to imply that sequences are likely to be related

Sequences & evolution

- Similar sequences of sufficient length usually have a common evolutionary origin
 - i.e. are homologous
- For a pair of sequences
 - "% similarity" makes sense
 - "% homology" doesn't
- In alignment of two homolous sequences
 - differences mostly represent *mutations* that occurred in one or both lineages, but
 - Not all mutations are inferrable from the alignment

...acagaatcagggtcccgtta... (Observed) ALIGNMENT: ...accgaatcagg-tcccgtca... (may not be unique!) (Unobserved) MUTATION HISTORY (in general, this is not even inferrable!): ...accgaatcgggtcccgtta... ...acagaatcgggtcccgtta... ...accgaatcaggtcccgtta... ...acagaatcaggtcccgtta... ...accgaatcaggtcccgtca... ...acagaatcagggtcccgtta... ONLY OBSERVED SEQUENCES ...acagaatcagggtcccgtta... ...accgaatcaggtcccgtca...

Complications

- Parallel & back mutations
 - ⇒ estimating total # of mutations requires statistical modelling
- Insertion/deletion, & segmental mutations
 - ⇒ finding the correct alignment can be problematic ('gap attraction')
 - -- even in closely related sequences!