
Today’s Lecture 

• Multiple sequence alignment 

 

• Improved scoring of pairwise alignments 

– Affine gap penalties 

– Profiles 
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The Edit Graph for a Pair of Sequences 
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Multiple Alignment via 

Dynamic Programming 
• Higher dimension edit graph 

– each dimension corresponds to a sequence; co-ordinates 
labelled by residues 

– Each edge corresponds to aligned column of residues (with 
gaps).  

– Can put arbitrary weights on edges; in particular,  

• can make these correspond to probabilities under an evolutionary 
model (Sankoff 1975). 

– implicitly assumes independence of columns 

• Highest weight path through graph again gives optimal 
alignment 
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Generalization to Higher Dimension 
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Each edge projects onto a gap or residue in each 

dimension, defining an alignment column; e.g. red 

edge defines 

Each “cell” in 3-dimensional case looks like this: 
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• # edges & # vertices are proportional to product of 

sequence lengths. 

– For k sequences of size N, is of order O(Nk)  

• impractical even for proteins (N ~ 300 to 500 residues) if k > 5:    

                            3005 = 2.4 1012  
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Multiple alignments: paths in huge WDAGs 

• To find high-scoring paths, need to  

– reduce size of graph  

– restrict allowed weighting schemes, and/or 

– sacrifice optimality guarantees 

• Durbin et al. discuss methods implementing these ideas: 

– Hein  

– Carillo-Lipman 

– progressive alignment (e.g. Clustal) 

• HMMs provide nice (but not guaranteed optimal) approach 
for constructing multiple alignments 
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The Edit Graph for a Pair of Sequences 
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Better Scoring Models 

• Optimal alignment scoring depends on probabilistic 

modelling (to be discussed later). 

• Inherent limitation of dynamic programming: each 

alignment column (edge in WDAG) scored independently 

– biologically unrealistic, but 

– required for dynamic programming to work!  

 



• Two strategies to allow allow partial non-independence 

while preserving dynamic programming framework:  

– Enhance graph 

– Allow scores to depend on position within the sequence (i.e. not 

just on a BLOSUM-type score matrix) 

• so some substitutions (of same residues) or gaps penalized more heavily 

than others  
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Gap Penalties 

• Usual scoring scheme assigns same penalty g to 

each gap edge, so  

– weights on extended gaps of size s are linear in s, i.e.  

– total gap penalty gap(s) = s  g. 

– e.g. in above example, if each g = -6, total penalty on gap 

would be 

             gap(5)  =  5   -6  =  -30 

TNAVAHVD-----DMPNAL 
YEAAIQLQVTGVVVTDATL 
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Gap Penalties 

• Would like more flexible gap penalties: 

•  In proteins, insertions & deletions are rare;  

– but when occur, often consist of several residues, because  

• they are in regions (loops) tolerant of length changes 

– at DNA level, indels in protein coding sequence usually a 

multiple of 3 nucleotides 

• otherwise, would change reading frame  

• In noncoding sequence,  

– the most common indel size is 1 

– but larger indels occur much more frequently than 

multiple independent single-base indels 
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• Can allow arbitrary convex gap penalties 

– gap(s+t)  gap(s) + gap(t),  where s and t are (integer) gap sizes  

   by extending edit graph:  

– add edges corresponding to arbitrary length gaps from each vertex 

to each horizontally or vertically downstream vertex  

– (convexity condition prevents favoring two adjacent short gaps 

over a single long gap).  

   Time complexity now O(MN(M+N)) 

– often unacceptable for moderate M, N. 

– Also: how to choose appropriate weights? (need data to estimate!) 
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Affine Gap Penalties 

• Affine gap penalties:  

– less general than arbitrary convex penalties, but  

– more general than linear penalties.  

• Two parameters:  

– gap opening penalty go  

– gap extension penalty ge 

• gap(n) (penalty for size n gap) is then 

                                        go + n ge   = gi + (n – 1) ge 

   where the gap initiating penalty gi = go + ge   
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• Example: for BLOSUM62, good penalties are 

– gi = -12,   

– ge = -2 

   These perform much better than linear penalty  

–  (e.g. g = -6) 

• N.B. Durbin et al. reverse gi and go 

– gi is called the ‘gap opening’ penalty 

• Can obtain affine penalties using extension of 

edit graph, retaining complexity O(MN): 
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Edit Graph for Affine Gap Penalties 
Double # vertices, creating left-right pair in place of each 

original vertex. Each cell looks like this: 

• gap-opening edges from left vertex to right vertex of each pair :   

weight  go 

• gap extension edges going horizontally or vertically between right 

vertices : weight ge 

• diagonal edges originate from either left or right vertex, but always 

go to a left vertex. 

ge 

ge 

ge 

ge go 

go 

go 

go 

each left vertex has out-degree 

and in-degree = 2 

each right vertex has out-degree 

and in-degree = 3 
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• Paths in the augmented graph still 
correspond to alignments  

– can  more than one path for same alignment  

– but highest scoring paths still give best 
alignments 

• Score assigned to size n gap is go + n ge  

– i.e. affine penalty 

• Smith-Waterman-Gotoh algorithm 



Profiles (position-specific scoring) 
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The Edit Graph for a Pair of Sequences 
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• Profiles: Position-specific scoring scheme specifying score of each 

possible substitution at each position of a sequence 

From R. Luthy, I. Xenarios and P. Bucher, Improving the sensitivity of the sequence profile method 

Protein Sci. 3: 139-146 (1994) 
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• This is an important improvement!  

–  reflects fact that different parts of sequence may evolve 

at different rates 

•  e.g. in proteins, 

– internal core region of tightly packed residues, or active 

sites of enzyme, are more highly conserved;  

– surface residues, particularly in loops, often less 

conserved.  

– so scores tend to be correlated (high scores in core, lower 

on surface) 
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Copyright restrictions may apply. 

Saunders & Green Mol Biol Evol 2007 24:2632-2647; doi:10.1093/molbev/msm190 

Rates of amino acid exchange in mammalian proteins 

by burial status   

H: hydrophobic 

P: polar 
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• PSIBLAST approach: 

– initially compare query sequence to database 
sequences (using BLOSUM-type scoring matrix),  

– build profile using initial matches 

– rescan database using profile 

• Optimal choice of  

– substitution matrix,  

– gap penalties, or  

– profiles  

    depends on probabilistic modelling (to be 
discussed later!) 


