
Today’s Lecture 

• Probability models for sequences 

 

• Neutralist vs selectionist interpretations 

 

• Site models 

 

• Comparing models: Likelihood ratios & 

weight matrices 

– (Hypothesis testing & Neyman-Pearson lemma) 
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• A probability space (S,P) is a sample space S with a 

prob dist’n P on S. 

• Prob dist’n on S is sometimes called a probability 

model for S, particularly if several dist’ns are being 

considered.  

– Write models as M1, M2 , probabilities as P(s | M1),  

P(s | M2).  

– e.g.  

• M1 = prob dist’n for splice site seqs,   

• M2  = prob dist’n for “background” (arbitrary genomic) seqs. 
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Basic Probability Theory Concepts 

(cont’d) 

• An event E is a criterion that is true or false for each 

sS.  

– defines a subset of S (sometimes also denoted E).  

– P(E) is defined to be s|E is true P(s). 

• Events E1, E2 , ... , En are mutually exclusive if no 

two of them are true for the same point;  

– then P(E1 or E2  or ... or En) = 1i n P(Ei).  

• If E1, E2 , ... , En  are also exhaustive, i.e. every s in S 

satisfies Ei for some i, then 1i n P(Ei) = 1. 
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• For events E and H, the conditional probability of E 
given H, is 

              P(E | H)   P(E and H) / P(H)  

  (= prob that both E and H are true, given H is true)  

– undefined if P(H) = 0. 

• E and H are (statistically) independent if  
                       P(E) = P(E | H)  

(i.e. prob. E is true doesn’t depend on whether H is true); 

or equivalently  

                P(E and H) = P(E)P(H). 
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Probabilities on Sequences 

• Let S = space of DNA or protein sequences of length n. 

Possible assumptions for assigning probabilities to S: 

– Equal frequency assumption: All residues are equally probable at 

any position;  

• P(Er
(i)) = P(Eq

(i)) for any two residues r and q,  

– where Er
(i) means residue r occurs at position i, then  

• Since for fixed i the Er
(i) are mutually exclusive and exhaustive,  

                             P(Er
(i)) = 1 / |A|  

   where A = residue alphabet 

  P(Er
(i)) = 1/20 for proteins, 1/4 for DNA). 

– Independence assumption: whether or not a residue occurs at a 

given position is independent of residues at other positions. 
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• Given above assumptions, the probability of the sequence  

     s = ACGCG  

   (in the space S of all length 5 sequences) is calculated by 
considering 5 events: 

– Event 1 is that first nuc is A.    Probability = .25.  

– Event 2 is that 2d  nuc is C.      Probability = .25.  

– Event 3 is that 3d nuc is G.       Probability = .25.  

– Event 4 is that 4th nuc is C.      Probability = .25.  

– Event 5 is that 5th nuc is G.      Probability = .25. 

    By independence assumption, prob of all 5 events occurring 
is the product (.25)5 = 1/1024.  

   Since s is the only sequence satisfying all 5 conditions, P(s) 
= 1/1024. 



7 

• More generally, under equal freq and indep 
assumptions,  

         prob of nuc sequence of length n   =  .25n, 

         prob of protein sequence of length n  =  .05n  

     in the space S of length n sequences. 
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Failure of Equal Frequency 

Assumption for (Real) DNA 

• For most organisms, the nucleotide composition is 
significantly different from .25 for each nucleotide, 
e.g.: 

– H. influenza .31 A, .19 C, .19 G, .31 T 

– P. aeruginosa .17 A, .33 C, .33 G, .17 T 

– M. janaschii .34 A, .16 C, .16 G, .34 T 

– S. cerevisiae .31 A, .19 C, .19 G, .31 T 

– C. elegans .32 A, .18 C, .18 G, .32 T 

– H. sapiens .29 A, .21 C, .21 G, .29 T 



9 

• Note approximate symmetry: A  T, C  G,  

– even though we’re counting nucs on just one strand.  

– Expect exact equality when counting both strands 

• Explanation:  

– Although individual biological features may have non-
symmetric composition (local asymmetry),  

– usually features are distributed approx randomly w.r.t. 
strand,  

– so local asymmetries cancel, yielding overall 
symmetry. 
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General Hypotheses Regarding 

Unequal Frequency 

• Neutralist hypothesis:  mutation bias  

– e.g. due to nucleotide pool composition 

• Selectionist hypothesis: selection 

– selection on (many) particular nucleotides 

– selection on mutational bias mechanisms 

– … 
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Site Models 

• Probability models for short sequences, such 
as: 

– splice sites 

– translation start sites 

– promoter elements 

– protein “motifs” 
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(Protein-coding) Gene Structure 

in Eukaryotes 

mRNA (spliced) 

Gene 

Transcription 

start site 
Exon 

3’ splice site 

5’ splice site 

Coding sequence (ORF) – 

begins with start codon (AUG), 

ends with stop codon (UAA, 

UAG, or UGA) 

Transcription direction 

5’ untranslated region 

3’ untranslated region 

Polyadenylation site 
Intron 

PolyA tail 

Upstream regulatory 

region 
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• Assumptions: 

– different examples of site can be aligned without gaps 
(indels) such that tend to have same residues in same 
positions 

– drop equal freq assumption: allow position-specific freqs 

– retain independence assumption (for now) 
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• Applies to short segments (< 30 residues) where  

– precise residue spacing is structurally or functionally 
important, and  

– certain positions are highly conserved 

• Examples:  

– DNA/RNA sequences binding a single protein or RNA 
molecule 

– Protein internal regions structurally constrained due to 
folding requirements; or  

– protein surface regions constrained because bind certain 
ligands 
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Construction of Site Models 

• Collect examples of site 

• Align (without gaps) 

• Count occurrences of residues at each position 

• Convert to frequencies  
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Nucleotide Counts for  

8192 C. elegans 3’ Splice Sites   

 

 

A  3276  3516  2313   476    67   757   240  8192     0  3359  2401  2514  

C   970   648   664   236   129  1109  6830     0     0  1277  1533  1847  

G   593   575   516   144    39   595    12     0  8192  2539  1301  1567  

T  3353  3453  4699  7336  7957  5731  1110     0     0  1017  2957  2264  

 

 

A 0.400 0.429 0.282 0.058 0.008 0.092 0.029 1.000 0.000 0.410 0.293 0.307  

C 0.118 0.079 0.081 0.029 0.016 0.135 0.834 0.000 0.000 0.156 0.187 0.225  

G 0.072 0.070 0.063 0.018 0.005 0.073 0.001 0.000 1.000 0.310 0.159 0.191  

T 0.409 0.422 0.574 0.896 0.971 0.700 0.135 0.000 0.000 0.124 0.361 0.276  

 

Exon  Intron 

3’ ss 

CONSENSUS W   W    W   T    T   t   C    A    G   r   w   w 
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3’ Splice Sites – C. elegans 
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Nucleotide Counts for  

8192 C. elegans 5’ Splice Sites 

 

A  3404  4644  1518     0     0  4836  5486   837  1632  2189  2278  2355  

C  1850  1224   583     0    14   118   588   237   801   771   889   986  

G  1562   912  4891  8192     0  1890   672  6164   589   962  1056   827  

T  1376  1412  1200     0  8178  1348  1446   954  5170  4270  3969  4024  

 

 

A 0.416 0.567 0.185 0.000 0.000 0.590 0.670 0.102 0.199 0.267 0.278 0.287  

C 0.226 0.149 0.071 0.000 0.002 0.014 0.072 0.029 0.098 0.094 0.109 0.120  

G 0.191 0.111 0.597 1.000 0.000 0.231 0.082 0.752 0.072 0.117 0.129 0.101  

T 0.168 0.172 0.146 0.000 0.998 0.165 0.177 0.116 0.631 0.521 0.484 0.491  

 

Exon  Intron 

5’ ss 

CONSENSUS    x   a   g    G   T   a    a   g   t    t   w   t 
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5’ Splice Sites – C. elegans 
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Conserved Domain in RecR and  

Class I Topisomerases 
RecR  RLAEEKITEVILATNPTVEGEATANYIAELC 
RecM  RLQDDQVTEVILATNPNIEGEATAMYISRLL 
RecR  RVDDVGITEVIIATDPNTEGEATATYLVRMV 
TrsI  IFKENKIDEVIIATDPAREGENIAYKILNQL 
TOP1  KQLAEKADHIYLATDLDREGEAIAWRLREVI 
ORF1  AELLKQANTIIVATDSDREGENIAWSIIHKA 
TOP1  KDALKDADELILATDEDREGKVISWHLLQLL 
TOP1  TIFDKRVKTIILATDAAAEGEYIGRNILYRL 
TOP3  KREARNADYLMIWTDCDREGEYIGWEIWQEA 
TOP3  KRFLHEASEIVHAGDPDREGQLLVDEVLDYL 

RGYR  RNLAVEADEVLIGTDPDTEGEKIAWDLYLAL 

CONSENSUS xxxxxxxxxU&uatDxxxEGexxxxxUxxxu 

Consensus key:  

   Uppercase: all residues chemically similar  

    lowercase: most are  

    U,u: bulky aliphatic (I,L,V)   

    &: bulky hydrophobic (I,L,V,M,F,Y,W) 

From RL Tatusov, SF Altschul, and EV Koonin, PNAS 91: 12091-12095 
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Probability Models for Sites  

(assuming independence!) 

• For each position i, 1  i  n, let Pi be a prob dist’n on the 

alphabet of residues  

– e.g. constructed using counts at that position in a sample of sites.  

– Pi(r) for each residue r is the probability that  r occurs at position 

i in a sequence.  

• Prob dist’n P on the space S of sequences of length n is 

defined by   

 

   where s = s1 s2 ... sn 





ni

ii sPsP
1

)()(
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Zero Probabilities 
• If Pi(r) = 0 for some i and r, then P(s) = 0 for some 

sequences.  

– may or may not be desirable 

• If due to failure to observe residue because of small sample 

size,  

– should perform “small-sample correction” to change Pi(r) to a 

small non-zero value.  

– usually done by adding ‘pseudocounts’ to each value in the counts 

matrix;  

• e.g. add 1 to each cell (has justification in Bayesian statistics) 

– Particularly an issue with proteins, due to larger alphabet size. 

• If reflects real biological constraints  

– then leave as 0. 

– e.g. requirement for G at position +1 (first intronic base) in 5’ss  
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Comparing Alternative  

Probability Models 

• We will want to consider more than one model at a 

time, in following situations: 

– To differentiate between two or more hypotheses about 

a sequence 

– To generate increasingly refined probability models 

that are progressively more accurate 
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• First situation arises in testing biological assertion, 

e.g. “is this a coding sequence?”  

– Compare two models: 

1. model associated with a hypothesis Hcoding,  

– assigns each sequence the prob of observing it under expt of 

drawing a coding sequence at random from genome 

2. model associated with a hypothesis Hnoncoding,  

– assigns each sequence the prob of observing it under expt of 

drawing a non-coding sequence at random 
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Likelihood Ratios 
• The likelihood of a model M given an observation 

s is 

           L(M | s) = P(s | M) 

   This is not the probability of the model! – (the sum 
over all models is not 1). 

• The likelihood ratio (LR) of two models Ma and 
M0  is given by 

 

    The numerator and denominator may both be very 
small!  

• The log likelihood ratio (LLR) is the logarithm of 
the likelihood ratio. 

)|(

)|(
)|,(

0

0
sML

sML
sMMLR a

a 
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Weight Matrices for Site Models 

• LR for sites: (prob under site model) / (prob 
under non-site (background) model) 

 

 

 

• LLR =  

– compute by reading from a matrix whose i-th column 
contains values  
for each residue r (with r labelling the rows).   

• We use log2. 






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Example: 3’ splice sites in C. elegans 

• For background distribution take  

– genomic residue freqs computed from C. elegans 

chrom. I: 

A  4,575,132:    0.321 

C  2,559,048:    0.179 

G  2,555,862:    0.179 

T  4,582,688:    0.321 

– other choices are possible, e.g. composition of 

transcribed regions  

• For the site distribution we take  

– site residue freqs from 8192 sites: 
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Nucleotide Counts for  

8192 C. elegans 3’ Splice Sites   

 

 

A  3276  3516  2313   476    67   757   240  8192     0  3359  2401  2514  

C   970   648   664   236   129  1109  6830     0     0  1277  1533  1847  

G   593   575   516   144    39   595    12     0  8192  2539  1301  1567  

T  3353  3453  4699  7336  7957  5731  1110     0     0  1017  2957  2264  

 

 

A 0.400 0.429 0.282 0.058 0.008 0.092 0.029 1.000 0.000 0.410 0.293 0.307  

C 0.118 0.079 0.081 0.029 0.016 0.135 0.834 0.000 0.000 0.156 0.187 0.225  

G 0.072 0.070 0.063 0.018 0.005 0.073 0.001 0.000 1.000 0.310 0.159 0.191  

T 0.409 0.422 0.574 0.896 0.971 0.700 0.135 0.000 0.000 0.124 0.361 0.276  

 

Exon  Intron 

3’ ss 

CONSENSUS W   W    W   T    T   t   C    A    G   r   w   w 
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Weight Matrix – 3’ Splice Sites 

SITE FREQUENCIES: 
A  0.400  0.429  0.282  0.058  0.008  0.092  0.029  1.000  0.000  0.410  0.293  0.307  

C  0.118  0.079  0.081  0.029  0.016  0.135  0.834  0.000  0.000  0.156  0.187  0.225  

G  0.072  0.070  0.063  0.018  0.005  0.073  0.001  0.000  1.000  0.310  0.159  0.191  

T  0.409  0.422  0.574  0.896  0.971  0.700  0.135  0.000  0.000  0.124  0.361  0.276  

 

BACKGROUND FREQUENCIES: 
A  0.321  0.321  0.321  0.321  0.321  0.321  0.321  0.321  0.321  0.321  0.321  0.321  

C  0.179  0.179  0.179  0.179  0.179  0.179  0.179  0.179  0.179  0.179  0.179  0.179  

G  0.179  0.179  0.179  0.179  0.179  0.179  0.179  0.179  0.179  0.179  0.179  0.179  

T  0.321  0.321  0.321  0.321  0.321  0.321  0.321  0.321  0.321  0.321  0.321  0.321  

 

 

 

WEIGHTS: 
A   0.32   0.42  -0.18  -2.46  -5.29  -1.79  -3.45   1.64 -99.00   0.36  -0.13  -0.06  

C  -0.60  -1.18  -1.15  -2.64  -3.51  -0.41   2.22 -99.00 -99.00  -0.20   0.06   0.33  

G  -1.31  -1.35  -1.51  -3.35  -5.23  -1.30  -6.93 -99.00   2.48   0.79  -0.17   0.10  

T   0.35   0.39   0.84   1.48   1.60   1.12  -1.24 -99.00 -99.00  -1.37   0.17  -0.22  
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Scoring a Candidate 3’ Splice Site 

 

A   0.32   0.42  -0.18  -2.46  -5.29  -1.79  -3.45   1.64 -99.00   0.36  -0.13  -0.06  

C  -0.60  -1.18  -1.15  -2.64  -3.51  -0.41   2.22 -99.00 -99.00  -0.20   0.06   0.33  

G  -1.31  -1.35  -1.51  -3.35  -5.23  -1.30  -6.93 -99.00   2.48   0.79  -0.17   0.10  

T   0.35   0.39   0.84   1.48   1.60   1.12  -1.24 -99.00 -99.00  -1.37   0.17  -0.22  

 

 

      T      T      C      T      T      A      C      A      G      A      A      T 

 

    0.35 + 0.39 +-1.15 + 1.48 + 1.60 +-1.79 + 2.22 + 1.64 + 2.48 + 0.36 +-0.13 +-0.22  = 7.23 
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• General def.: a weight matrix W  has 

  entries wrj indexed by residues r  A, and 1  j  n 

•  score of a sequence s = (s1 s2 ... sn ) is  

 

 

 

• In the site case,  

 

 


 nj

js j
w

1

))|(log(-))|(log( backgroundsite MrPMrPw jjrj 
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Simple Hypothesis Testing 

• Suppose we wish to decide between two models: 

– Ma (the alternative hypothesis), and  

– M0 (the null hypothesis)  

   using an observation s from a sample space S. (e.g.  

– s a sequence,  

– Ma a site model 

– M0 a “background” (non-site) model.  

• Strategy:  

– choose a subset C  S, called the critical region for the 
comparison.  

– If s falls within C, reject M0 (accept Ma),  

– otherwise accept  M0 (reject Ma). 
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Types of Errors with Hypothesis Test 

• a Type I error occurs if we reject M0 when it is 
true.  

– For a given critical region C, the prob of 
committing a Type I error is denoted C   

                C = P(C | M0) = sC P(s | M0) 

• C is called the significance level of the test 
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Sample Space S – probabilities under M0 

Reject M0 (Type I error if M0  true) 

C 

1 - C 

Critical Region C 

Accept M0 
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•  a Type II error occurs if we accept M0 when it 
is false.  

– For a given C, prob of committing a Type II error 
is denoted C 

              C = sC P(s | Ma) = 1 - P(C | Ma) 

•  C = 1 - C is called the power of the test.  
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Sample Space S – probabilities under Ma 

 

Reject M0 

C  = 1 - C 

Accept M0 (Type II error if Ma true) 

Critical Region C 

1  C  = C 
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• Designing a test involves a tradeoff between 
significance and power  

– smaller C gives smaller Type I error but larger 
Type II error (lower power). 



38 

Likelihood Ratio Tests 

• A likelihood ratio test of models Ma and M0  is a 

hypothesis test of the two models, with critical 

region C defined by 

                   C = CL = {s | LR(Ma, M0  | s)  L} 

   for some non-negative constant L, the cutoff value. 
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• Neyman-Pearson lemma motivates use of the 

likelihood ratio as an optimal discriminator, or 

“score”  

– even in contexts where we aren’t explicitly testing 

hypotheses. 

• any monotonic function f(LR) of  likelihood ratio 

has equivalent optimality properties  

– because defines the same set of critical regions:  

      LR(Ma, M0  | s)  L  f(LR(Ma, M0  | s))  f(L) 

• convenient to take f to be the log function, in 

which case we get the log likelihood ratio. 
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Neyman-Pearson lemma 

 Let Ma and M0  be two models, and CL the critical region 
defined by a likelihood ratio test of Ma vs. M0  with  

– cutoff value L,  

– significance level L, and  

– power L = 1 - L.  

Then if C is any other critical region, we have 

– If C < L , then C < L (and C > L ) 

– If C = L , then C  L  (and C  L )  

  In other words, the likelihood ratio test with significance 
level L is the most powerful test  

– (has the lowest type II error rate)  

  with that significance level. 
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x0 y0 z0 

CΛ C 

xa ya za 

CΛ C 

xa   Λx0 
za < Λz0 

M0  probabilities  

Ma probabilities 

C < Λ 

 z0 < x0 

 Λ z0 < Λ x0 

 za < xa 

 C < Λ 

Idea of Neyman-Pearson lemma proof: 
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 Proof: Suppose C < L .Then  

 

    

   Subtract from both sides the terms involving  

s  C  CL This leaves  

 

(1) 

) |()|( 00 MsPMsP
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• By definition of the likelihood ratio test, for 

any observation s, 

 

• From this, it follows that 

(2) 

 

   and 

  (3) 
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• Combining (2), (1), and (3) 

 

 

 so (cancelling the common factor 1 / L) 

 

 

 so, adding in the terms corresponding to s  C  CL 

 

 i.e C < L The other part of the lemma (C  L  
if C = L) is proved similarly. 
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