Today's Lecture

• Probability models for sequences

• Neutralist vs selectionist interpretations

• Site models

- Comparing models: Likelihood ratios & weight matrices
 - (Hypothesis testing & Neyman-Pearson lemma)

- A *probability space* (*S*,*P*) is a sample space *S* with a prob dist'n *P* on *S*.
- Prob dist'n on *S* is sometimes called a *probability model* for *S*, particularly if several dist'ns are being considered.
 - Write models as M_1, M_2 , probabilities as $P(s \mid M_1)$, $P(s \mid M_2)$.
 - e.g.
 - M_1 = prob dist'n for splice site seqs,
 - M_2 = prob dist'n for "background" (arbitrary genomic) seqs.

Basic Probability Theory Concepts (cont'd)

- An *event E* is a criterion that is true or false for each *s*∈*S*.
 - defines a subset of S (sometimes also denoted E).

-P(E) is defined to be $\sum_{s|E \text{ is true}} P(s)$.

• Events $E_1, E_2, ..., E_n$ are *mutually exclusive* if no two of them are true for the same point;

- then $P(E_1 \text{ or } E_2 \text{ or } \dots \text{ or } E_n) = \sum_{1 \le i \le n} P(E_i)$.

• If $E_1, E_2, ..., E_n$ are also *exhaustive*, i.e. every *s* in *S* satisfies E_i for some *i*, then $\sum_{1 \le i \le n} P(E_i) = 1$.

• For events *E* and *H*, the *conditional probability* of *E* given *H*, is

 $P(E \mid H) \equiv P(E \text{ and } H) / P(H)$

- (= prob that both *E* and *H* are true, given *H* is true) - undefined if P(H) = 0.
- *E* and *H* are (*statistically*) *independent* if P(E) = P(E | H)

(i.e. prob. *E* is true doesn't depend on whether *H* is true); or equivalently

P(E and H) = P(E)P(H).

Probabilities on Sequences

- Let *S* = space of DNA or protein sequences of length *n*. Possible assumptions for assigning probabilities to *S*:
 - *Equal frequency assumption:* All residues are equally probable at any position;
 - $P(E_r^{(i)}) = P(E_q^{(i)})$ for any two residues *r* and *q*,

- where $E_r^{(i)}$ means residue *r* occurs at position *i*, then

• Since for fixed *i* the $E_r^{(i)}$ are mutually exclusive and exhaustive,

 $P(E_r^{(i)}) = 1 / |A|$

where *A* = residue alphabet

 $P(E_r^{(i)}) = 1/20$ for proteins, 1/4 for DNA).

- *Independence assumption*: whether or not a residue occurs at a given position is independent of residues at other positions.

- Given above assumptions, the probability of the sequence s = ACGCG
 - (in the space S of all length 5 sequences) is calculated by considering 5 events:
 - Event 1 is that first nuc is A.
 - Event 2 is that 2^d nuc is C.
 - Event 3 is that 3^d nuc is G.
 - Event 4 is that 4^{th} nuc is C.

Probability = .25.

Probability = .25.

Probability
$$= .25$$
.

Probability
$$= .25$$
.

- Event 5 is that 5^{th} nuc is G. Probability = .25.

By independence assumption, prob of all 5 events occurring is the product $(.25)^5 = 1/1024$.

Since s is the only sequence satisfying all 5 conditions, P(s)= 1/1024.

• More generally, under equal freq and indep assumptions,

prob of nuc sequence of length $n = .25^n$, prob of protein sequence of length $n = .05^n$ in the space *S* of length *n* sequences. Failure of Equal Frequency Assumption for (Real) DNA

- For most organisms, the nucleotide composition is significantly different from .25 for each nucleotide, e.g.:
 - *H. influenza* .31 A, .19 C, .19 G, .31 T
 - P. aeruginosa .17 A, .33 C, .33 G, .17 T
 - M. janaschii .34 A, .16 C, .16 G, .34 T
 - S. cerevisiae .31 A, .19 C, .19 G, .31 T
 - C. elegans .32 A, .18 C, .18 G, .32 T
 - H. sapiens .29 A, .21 C, .21 G, .29 T

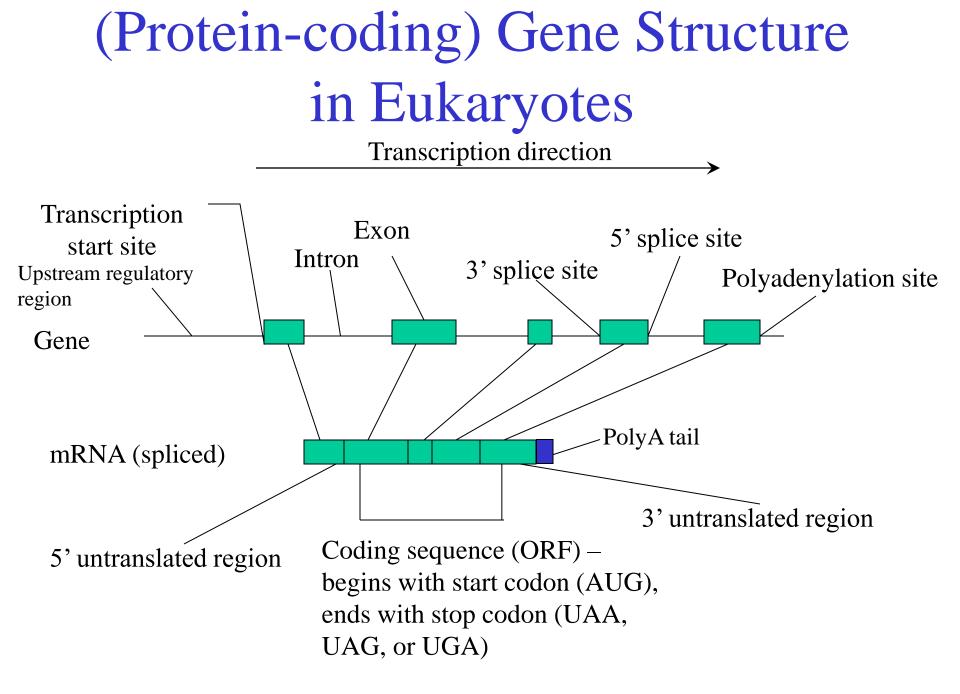
- Note approximate symmetry: $A \cong T, C \cong G$,
 - even though we're counting nucs on just one strand.
 - Expect *exact* equality when counting both strands
- Explanation:
 - Although individual biological features may have nonsymmetric composition (local *asymmetry*),
 - usually features are distributed approx *randomly* w.r.t. strand,
 - so local asymmetries *cancel*, yielding overall symmetry.

General Hypotheses Regarding Unequal Frequency

- Neutralist hypothesis: *mutation bias* e.g. due to nucleotide pool composition
- Selectionist hypothesis: *selection*
 - selection on (many) particular nucleotides
 - selection on mutational bias mechanisms

Site Models

- Probability models for short sequences, such as:
 - splice sites
 - -translation start sites
 - promoter elements
 - -protein "motifs"

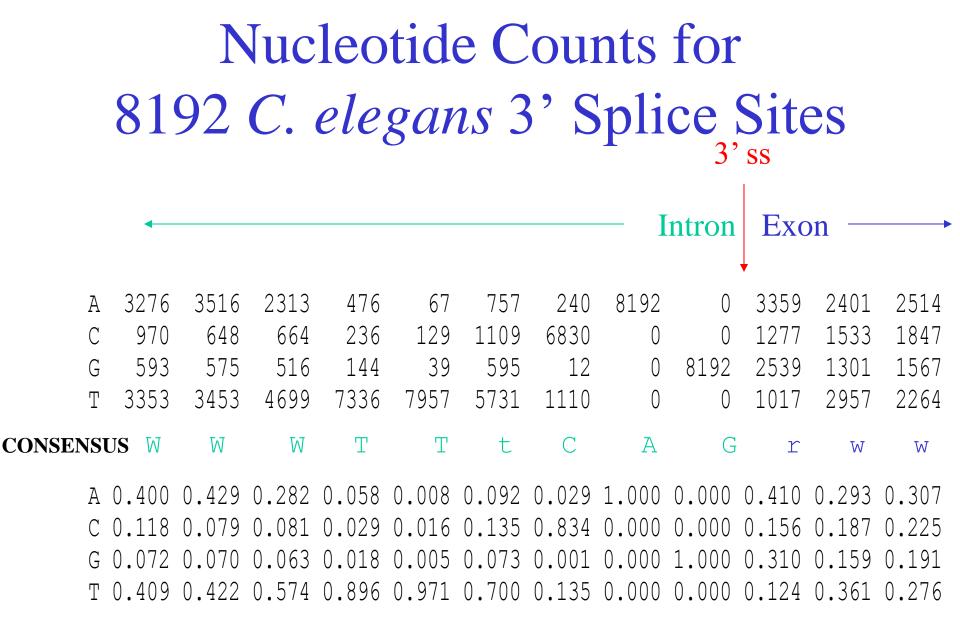


- Assumptions:
 - different examples of site can be aligned *without gaps* (indels) such that tend to have same residues in same positions
 - drop equal freq assumption: allow *position-specific freqs*
 - retain *independence* assumption (for now)

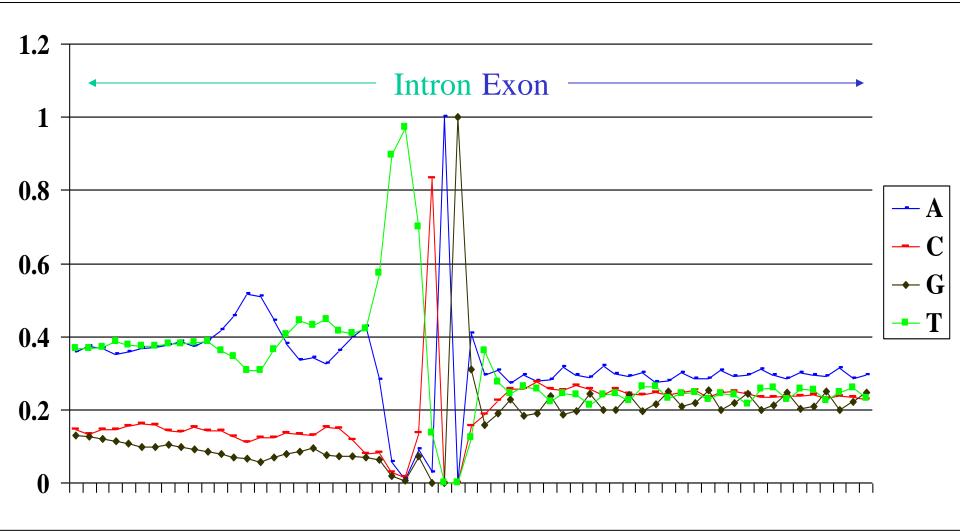
- Applies to short segments (< 30 residues) where
 - precise residue spacing is structurally or functionally important, and
 - certain positions are highly conserved
- Examples:
 - DNA/RNA sequences binding a single protein or RNA molecule
 - Protein internal regions structurally constrained due to folding requirements; or
 - protein surface regions constrained because bind certain ligands

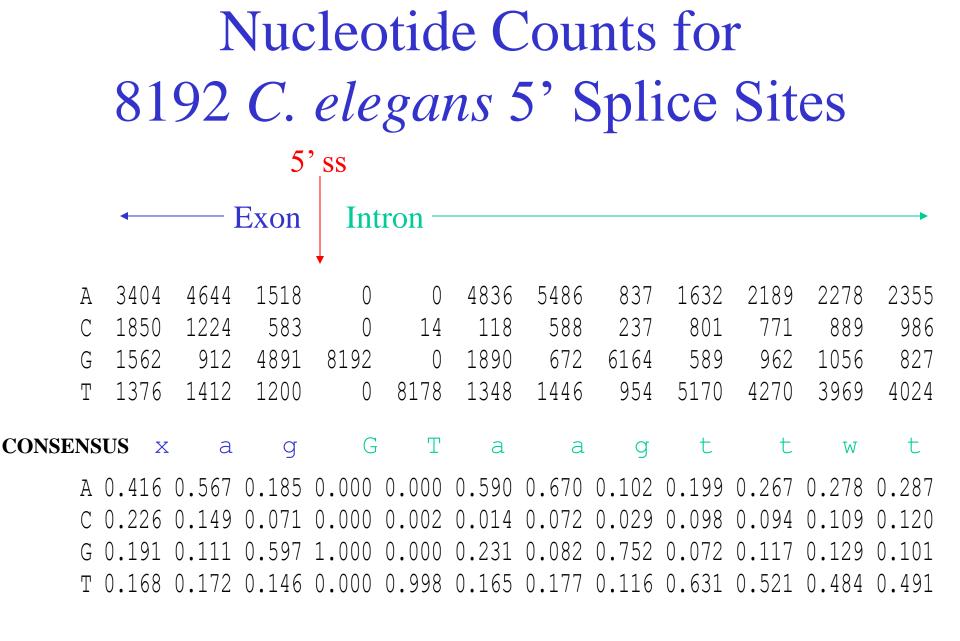
Construction of Site Models

- Collect examples of site
- Align (without gaps)
- Count occurrences of residues at each position
- Convert to frequencies

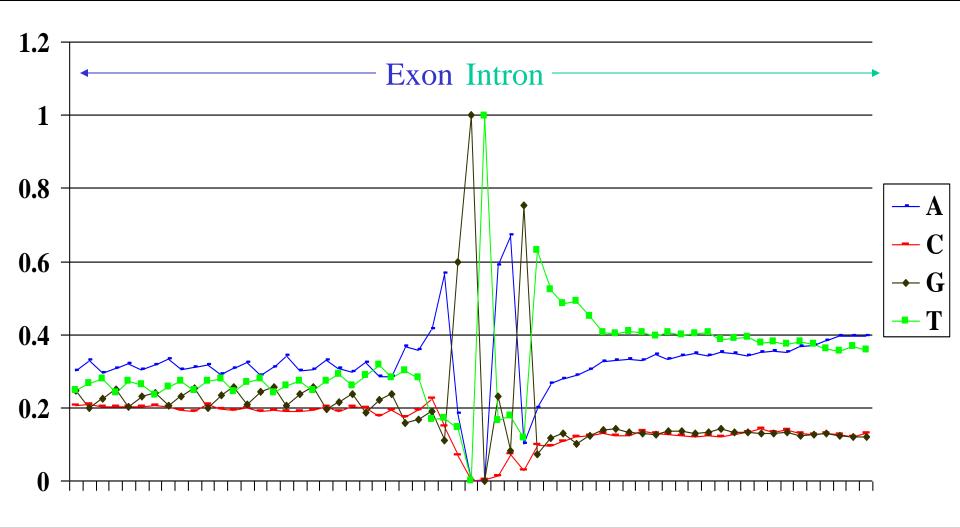


3' Splice Sites – C. elegans





5' Splice Sites – C. elegans



Conserved Domain in RecR and Class I Topisomerases

RLAEEKITEVILATNPTVEGEATANYIAELC RecR RLODDOVTEVILATNPNIEGEATAMYISRLL RecM **RVDDVGITEVIIATDPNTEGEATATYLVRMV** RecR TrsI IFKENKIDEVIIATDPAREGENIAYKILNQL KQLAEKADHIYLATDLDREGEAIAWRLREVI TOP1 AELLKQANTIIVATDSDREGENIAWSIIHKA ORF1 KDALKDADELILATDEDREGKVISWHLLQLL TOP1 TOP1 TIFDKRVKTIILATDAAAEGEYIGRNILYRL TOP3 KREARNADYLMIWTDCDREGEYIGWEIWQEA KRFLHEASEIVHAGDPDREGQLLVDEVLDYL TOP3 RGYR RNLAVEADEVLIGTDPDTEGEKIAWDLYLAL

CONSENSUS xxxxxxxXU&uatDxxxEGexxxxXUxxxu

Consensus key:

Uppercase: all residues chemically similar

lowercase: most are

U,u: bulky aliphatic (I,L,V)

From RL Tatusov, SF Altschul, and EV Koonin, PNAS 91: 12091-12095

&: bulky hydrophobic (I,L,V,M,F,Y,W)

Probability Models for Sites (assuming independence!)

- For each position i, $1 \le i \le n$, let P_i be a prob dist'n on the alphabet of residues
 - e.g. constructed using counts at that position in a sample of sites.
 - $P_i(r)$ for each residue *r* is the probability that *r* occurs at position *i* in a sequence.
- Prob dist'n *P* on the space *S* of sequences of length *n* is defined by

$$P(s) = \prod_{1 \le i \le n} P_i(s_i)$$

where $s = s_1 s_2 \dots s_n$

Zero Probabilities

- If $P_i(r) = 0$ for some *i* and *r*, then P(s) = 0 for some sequences.
 - may or may not be desirable
- If due to failure to observe residue because of small sample size,
 - should perform "small-sample correction" to change $P_i(r)$ to a small non-zero value.
 - usually done by adding 'pseudocounts' to each value in the counts matrix;
 - e.g. add 1 to each cell (has justification in Bayesian statistics)
 - Particularly an issue with proteins, due to larger alphabet size.
- If reflects real biological constraints
 - then leave as 0.
 - e.g. requirement for G at position +1 (first intronic base) in 5'ss

Comparing Alternative Probability Models

- We will want to consider more than one model at a time, in following situations:
 - To differentiate between two or more hypotheses about a sequence
 - To generate increasingly refined probability models that are progressively more accurate

- First situation arises in testing biological assertion, e.g. "is this a coding sequence?"
 - Compare two models:
 - 1. model associated with a hypothesis H_{coding} ,
 - assigns each sequence the prob of observing it under expt of drawing a coding sequence at random from genome
 - 2. model associated with a hypothesis $H_{noncoding}$,
 - assigns each sequence the prob of observing it under expt of drawing a non-coding sequence at random

Likelihood Ratios

• The *likelihood* of a model *M* given an observation *s* is

 $L(M \mid s) = P(s \mid M)$

This is *not* the *probability* of the model! – (the sum over all models is not 1).

• The *likelihood ratio* (*LR*) of two models M_a and M_0 is given by $LR(M_a, M_0 \mid s) = \frac{L(M_a \mid s)}{L(M_0 \mid s)}$

The numerator and denominator may both be very small!

• The *log likelihood ratio* (*LLR*) is the logarithm of the likelihood ratio.

Weight Matrices for Site Models

• LR for sites: (prob under site model) / (prob under non-site (background) model)

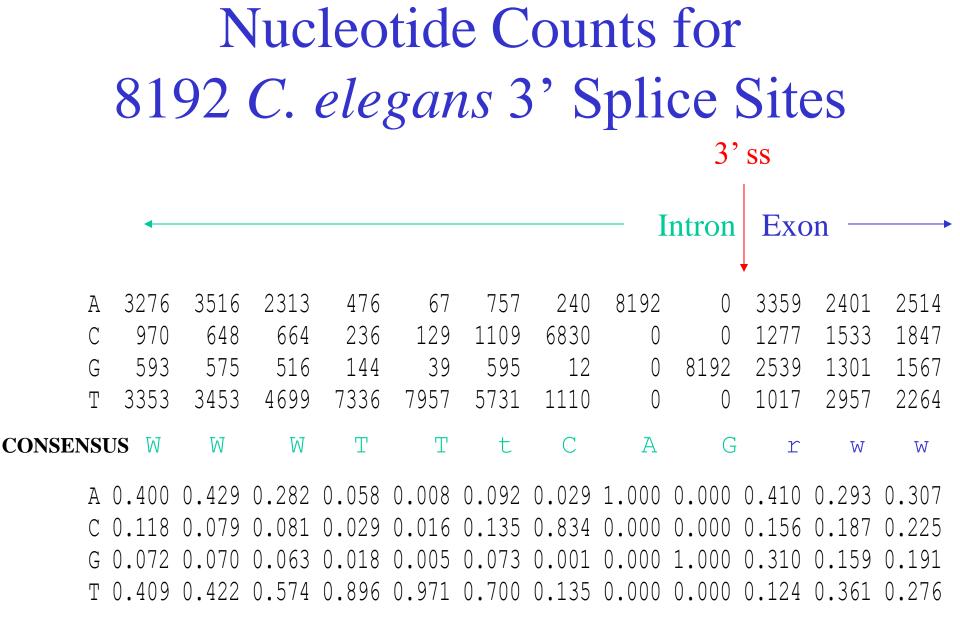
$$\frac{P(s \mid M_{\text{site}})}{P(s \mid M_{\text{background}})} = \frac{\prod_{1 \le i \le n} P_i(s_i \mid M_{\text{site}})}{\prod_{1 \le i \le n} P_i(s_i \mid M_{\text{background}})}$$

• LLR =
$$\sum_{1 \le i \le n} \log(P_i(s_i \mid M_{\text{site}})) - \log(P_i(s_i \mid M_{\text{background}}))$$

- compute by reading from a *matrix* whose *i*-th column contains values $\log(P_i(r | M_{site})) \log(P_i(r | M_{background}))$ for each residue *r* (with *r* labelling the rows).
 - We use log₂.

Example: 3' splice sites in C. elegans

- For *background distribution* take
 - genomic residue freqs computed from *C. elegans* chrom. I:
 - A 4,575,132: 0.321
 - C 2,559,048: 0.179
 - G 2,555,862: 0.179
 - T 4,582,688: 0.321
 - other choices are possible, e.g. composition of transcribed regions
- For the *site distribution* we take
 - site residue freqs from 8192 sites:



Weight Matrix – 3' Splice Sites

SITE FREQUENCIES:

1.000 0.293 0.400 0.429 0.282 0.058 0.008 0.092 0.029 0.000 0.410 0.307 Α 0.081 0.029 0.834 0.118 0.079 0.016 0.135 0.000 0.000 0.156 0.187 0.225 С 0.072 0.070 0.063 0.018 0.005 0.073 0.001 0.000 1.000 0.310 0.159 0.191 G 0.409 0.422 0.574 0.896 0.971 0.700 0.135 0.000 0.000 0.124 0.361 0.276 Т

BACKGROUND FREQUENCIES:

0.321 0.321 0.321 0.321 0.321 0.321 0.321 0.321 0.321 0.321 0.321 0.321 Α 0.179 0.179 0.179 0.179 0.179 0.179 0.179 0.179 0.179 0.179 0.179 0.179 С 0.179 0.179 0.179 0.179 0.179 G 0.179 0.179 0.179 0.179 0.179 0.179 0.179 0.321 0.321 0.321 0.321 0.321 0.321 0.321 0.321 0.321 0.321 0.321 0.321 Т

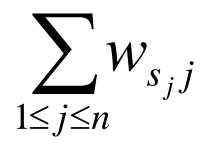
WEIGHTS:

0.32 -2.46-5.29 1.64 - 99.000.36 -0.13Α 0.42 -0.18-1.79-3.45-0.06-0.60-1.18-1.15 -2.64-3.51 -0.412.22 - 99.00 - 99.00-0.200.06 0.33 С -1.31-1.35-1.51-3.35-5.23-1.30-6.93 - 99.002.48 0.79 -0.170.10 G -1.24 - 99.00 - 99.000.35 0.39 0.84 1.48 1.60 1.12 -1.370.17 Т -0.22

Scoring a Candidate 3' Splice Site

Α	0.32	0.42	-0.18	-2.46	-5.29	-1.79	-3.45	1.64	-99.00	0.36	-0.13	-0.06	
С	-0.60	-1.18	-1.15	-2.64	-3.51	-0.41	2.22	-99.00	-99.00	-0.20	0.06	0.33	
G	-1.31	-1.35	-1.51	-3.35	-5.23	-1.30	-6.93	-99.00	2.48	0.79	-0.17	0.10	
Т	0.35	0.39	0.84	1.48	1.60	1.12	-1.24	-99.00	-99.00	-1.37	0.17	-0.22	
	Т	Т	С	Т	Т	Α	C	Α	G	Α	Α	Т	
	0.35	+ 0.39	+-1.15	+ 1.48	+ 1.60	+-1.79	+ 2.22	+ 1.64	+ 2.48	+ 0.36	+-0.13	+-0.22	= 7.23

- General def.: a *weight matrix* W has entries w_{rj} indexed by residues $r \in A$, and $1 \le j \le n$
- *score* of a sequence $s = (s_1 s_2 \dots s_n)$ is



• In the site case,

$$w_{rj} = \log(P_j(r \mid M_{site})) - \log(P_j(r \mid M_{background}))$$

Simple Hypothesis Testing

- Suppose we wish to decide between two models:
 - M_a (the *alternative hypothesis*), and
 - M_0 (the *null hypothesis*)

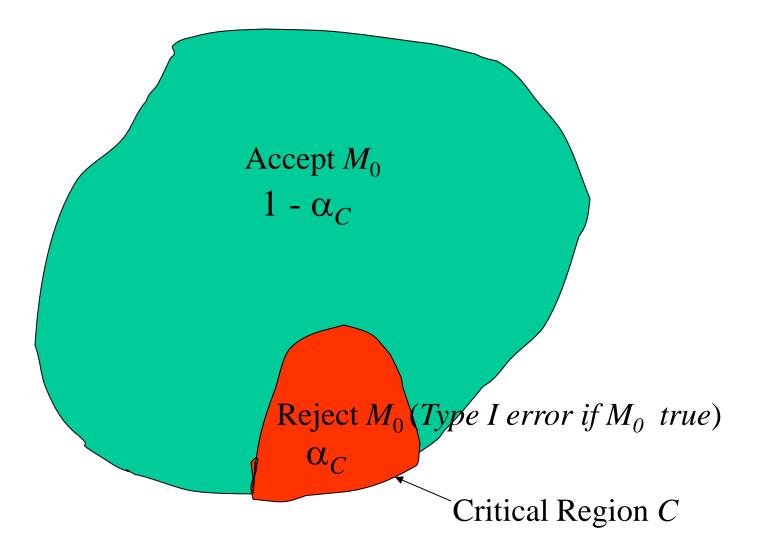
using an observation s from a sample space S. (e.g.

- *s* a sequence,
- $-M_a$ a site model
- M_0 a "background" (non-site) model.
- Strategy:
 - choose a subset $C \subset S$, called the *critical region* for the comparison.
 - If s falls within C, reject M_0 (accept M_a),
 - otherwise accept M_0 (reject M_a).

Types of Errors with Hypothesis Test

- a *Type I error* occurs if we reject M_0 when it is true.
 - For a given critical region *C*, the prob of committing a Type I error is denoted α_C $\alpha_C = P(C \mid M_0) = \sum_{s \in C} P(s \mid M_0)$
- α_C is called the *significance level* of the test

Sample Space S – probabilities under M_0

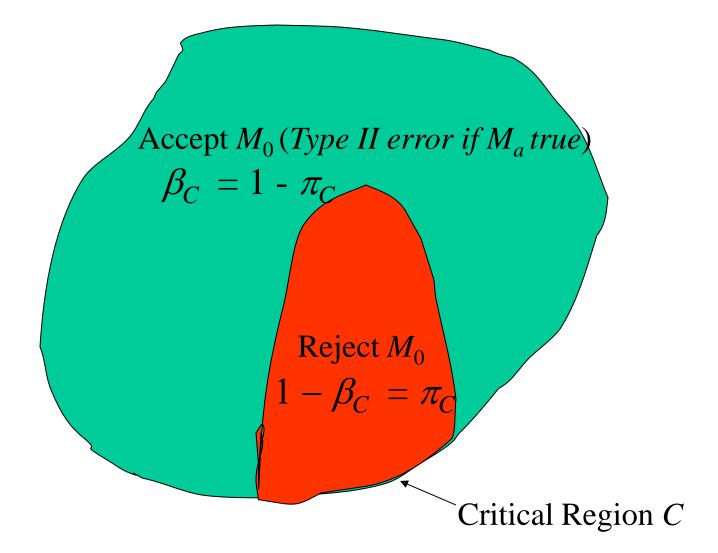


- a *Type II error* occurs if we accept M_0 when it is false.
 - For a given *C*, prob of committing a Type II error is denoted β_C

$$\beta_C = \sum_{s \notin C} P(s \mid M_a) = 1 - P(C \mid M_a)$$

• $\pi_C = 1 - \beta_C$ is called the *power* of the test.

Sample Space S – probabilities under M_a



- Designing a test involves a tradeoff between significance and power
 - smaller *C* gives smaller Type I error but larger Type II error (lower power).

Likelihood Ratio Tests

• A *likelihood ratio test* of models M_a and M_0 is a hypothesis test of the two models, with critical region *C* defined by

$$C = C_{\Lambda} = \{ s \mid LR(M_a, M_0 \mid s) \ge \Lambda \}$$

for some non-negative constant Λ , the *cutoff value*.

- Neyman-Pearson lemma motivates use of the *likelihood ratio* as an optimal *discriminator*, or "score"
 - even in contexts where we aren't explicitly testing hypotheses.
- any monotonic function *f*(*LR*) of likelihood ratio has equivalent optimality properties
 - because defines the same set of critical regions:

 $LR(M_a, M_0 \mid s) \ge \Lambda \Leftrightarrow f(LR(M_a, M_0 \mid s)) \ge f(\Lambda)$

• convenient to take *f* to be the log function, in which case we get the *log likelihood ratio*.

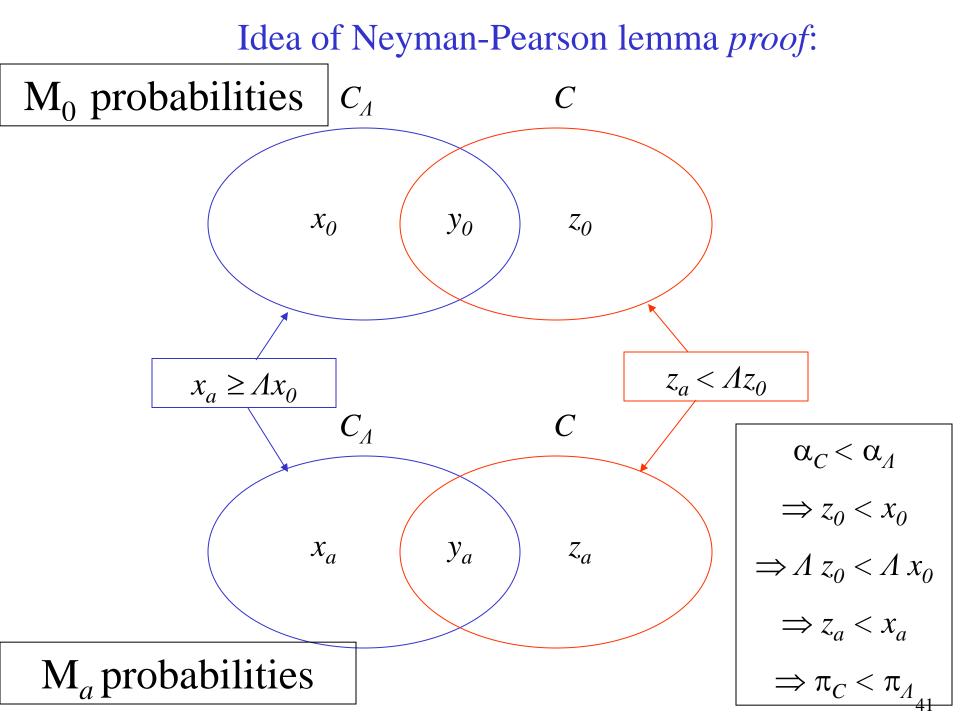
Neyman-Pearson lemma

- Let M_a and M_0 be two models, and C_A the critical region defined by a likelihood ratio test of M_a vs. M_0 with
 - cutoff value Λ ,
 - significance level α_A , and
 - power $\pi_A = 1 \beta_A$.
- *Then* if *C* is any other critical region, we have
 - If $\alpha_C < \alpha_A$, then $\pi_C < \pi_A$ (and $\beta_C > \beta_A$)
 - If $\alpha_C = \alpha_A$, then $\pi_C \le \pi_A$ (and $\beta_C \ge \beta_A$)

In other words, the likelihood ratio test with significance level α_A is the most powerful test

- (has the lowest type II error rate)

with that significance level.



• **Proof**: Suppose $\alpha_C < \alpha_A$. Then

$$\sum_{s \in C} P(s \mid M_0) < \sum_{s \in C_\Lambda} P(s \mid M_0)$$

Subtract from both sides the terms involving $s \in C \cap C_A$ This leaves

(1)
$$\sum_{s \in C \setminus C_{\Lambda}} P(s \mid M_0) < \sum_{s \in C_{\Lambda} \setminus C} P(s \mid M_0)$$

• By definition of the likelihood ratio test, for any observation *s*,

$$s \in C_{\Lambda} \Leftrightarrow P(s \mid M_a) \ge \Lambda P(s \mid M_0)$$

• From this, it follows that

(2)
$$\sum_{s \in C \setminus C_{\Lambda}} \frac{1}{\Lambda} P(s \mid M_a) < \sum_{s \in C \setminus C_{\Lambda}} P(s \mid M_0)$$

and
(3)
$$\sum_{s \in C_{\Lambda} \setminus C} P(s \mid M_0) \leq \sum_{s \in C_{\Lambda} \setminus C} \frac{1}{\Lambda} P(s \mid M_a)$$

• Combining (2), (1), and (3)

$$\sum_{s \in C \setminus C_{\Lambda}} \frac{1}{\Lambda} P(s \mid M_{a}) < \sum_{s \in C \setminus C_{\Lambda}} P(s \mid M_{0}) < \sum_{s \in C_{\Lambda} \setminus C} P(s \mid M_{0}) \le \sum_{s \in C_{\Lambda} \setminus C} \frac{1}{\Lambda} P(s \mid M_{a})$$

so (cancelling the common factor 1 / A)

$$\sum_{s \in C \setminus C_{\Lambda}} P(s \mid M_a) < \sum_{s \in C_{\Lambda} \setminus C} P(s \mid M_a)$$

so, adding in the terms corresponding to $s \in C \cap C_A$ $\sum_{s \in C} P(s | M_a) < \sum_{s \in C_A} P(s | M_a)$ i.e $\pi_C < \pi_A$ The other part of the lemma ($\pi_C \le \pi_A$ if $\alpha_C = \alpha_A$) is proved similarly.