Today’s Lecture

Probability models for sequences
Neutralist vs selectionist interpretations
Site models

Comparing models: Likelihood ratios &
welght matrices
— (Hypothesis testing & Neyman-Pearson lemma)



A probability space (S,P) Is a sample space S with a
prob dist’n P on S.

* Prob dist’n on S Is sometimes called a probability

model for S, particularly if several dist’ns are being
considered.

— Write models as M,, M,, , probabilities as P(s | M,),
P(s | My).

—e.g.

* M, = prob dist’n for splice site seqs,

* M, =prob dist’n for “background” (arbitrary genomic) seqs.



Basic Probability Theory Concepts
(cont’d)

e An event E Is a criterion that 1s true or false for each
seS.

— defines a subset of S (sometimes also denoted E).
— P(E) 1s defined to be Xy iq e P(S)-

« EventsE,, E,, ..., E, are mutually exclusive if no
two of them are true for the same point;
—thenP(E;orE, or...orE) =%, ., P(E).

- IfE., E,, ..., E, are also exhaustive, I.e. every sin S
satisfies E; for some I, then X, .. P(E;) = 1.



 For events E and H, the conditional probability of E
given H, Is
P(E|H)= P(Eand H) /P(H)
(= prob that both E and H are true, given H is true)
— undefined if P(H) = 0.
« E and H are (statistically) independent if
P(E) = P(E|H)
(i.e. prob. E is true doesn’t depend on whether H Is true);

or equivalently
P(E and H) = P(E)P(H).




Probabilities on Sequences

« Let S =space of DNA or protein sequences of length n.
Possible assumptions for assigning probabilities to S:

— Equal frequency assumption: All residues are equally probable at
any position;
* P(E,") = P(E,") for any two residues r and g,
— where E,) means residue r occurs at position i, then
« Since for fixed i the E, are mutually exclusive and exhaustive,
P(E,M)=1/|A]
where A = residue alphabet
P(E,") = 1/20 for proteins, 1/4 for DNA).

— Independence assumption: whether or not a residue occurs at a
given position is independent of residues at other positions.



» Given above assumptions, the probability of the sequence
s =ACGCG

(in the space S of all length 5 sequences) is calculated by
considering 5 events:

— Event 1 is that first nuc is A.  Probability = .25.

— Event 2 isthat 29 nucisC.  Probability = .25.

— Event3isthat3%nucis G.  Probability = .25.

— Event4isthat4t nucis C.  Probability = .25.

— Event5isthat 5" nucis G.  Probability = .25.

By independence assumption, prob of all 5 events occurring
IS the product (.25)° = 1/1024.

Since s Is the only sequence satisfying all 5 conditions, P(s)
= 1/1024.



» More generally, under equal freq and indep
assumptions,

prob of nuc sequence of lengthn = .25",
prob of protein sequence of lengthn = .05"

In the space S of length n sequences.



Fallure of Equal Frequency
Assumption for (Real) DNA

 For most organisms, the nucleotide composition is
significantly different from .25 for each nucleotide,
e.g..
— H. influenza .31 A, .19C, 119G, 31T
— P. aeruginosa .17 A, .33 C, .33 G, .17 T
— M. janaschii .34 A, .16 C, .16 G, .34 T
— S. cerevisiae .31 A,.19C, .19G, .31 T
— C.elegans .32 A, .18C, .18G, .32 T
— H.sapiens .29 A, .21C, .21G, .29 T



* Note approximate symmetry: A= T, C=G,
— even though we’re counting nucs on just one strand.
— EXxpect exact equality when counting both strands

 Explanation:

— Although individual biological features may have non-
symmetric composition (local asymmetry),

— usually features are distributed approx randomly w.r.t.
strand,

— so local asymmetries cancel, yielding overall
symmetry.



General Hypotheses Regarding
Unequal Frequency

» Neutralist hypothesis: mutation bias
— e.g. due to nucleotide pool composition

» Selectionist hypothesis: selection
— selection on (many) particular nucleotides
— selection on mutational bias mechanisms
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Site Models

 Probability models for short sequences, such
as:

—splice sites

— translation start sites
— promoter elements
— protein “motifs”
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(Protein-coding) Gene Structure
In Eukaryotes

Transcription direction

Transcription

start site Int Exon 5’ splice site
ntron o o
Upstream regulatory 3’ splice site Polyadenylation site
region

B ' /
PolyA tail

MRNA (spliced)

3’ untranslated region

5> untranslated region ~ C0ding sequence (ORF) —
begins with start codon (AUG),

ends with stop codon (UAA,
UAG, or UGA)
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« Assumptions:

— different examples of site can be aligned without gaps
(indels) such that tend to have same residues in same
positions

— drop equal freqg assumption: allow position-specific freqs
— retain independence assumption (for now)
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« Applies to short segments (< 30 residues) where

— precise residue spacing Is structurally or functionally
Important, and

— certain positions are highly conserved

« Examples:

— DNA/RNA sequences binding a single protein or RNA
molecule

— Protein internal regions structurally constrained due to
folding requirements; or

— protein surface regions constrained because bind certain
ligands
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Construction of Site Models

Collect examples of site

Align (without gaps)

Count occurrences of residues at each position
Convert to frequencies
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Nucleotide Counts for
8192 C. elegans 3” Splice Sites

A 3270 3516 2313 476
C 970 048 664 236
G 593 575 5le 144
T 3353 3453 4699 7336

CONSENSUS W W W T

A 0.400 0.429 0.282 0.058
C 0.118 0.079 0.081 0.029
G 0.072 0.070 0.063 0.018
T 0.409 0.422 0.574 0.89%

ol 157 240 8192 0 3359
129 1109 6830 0 0 1277
39 595 12 0 8192 2539
7957 5731 1110 0 0 1017

T T C A G r

0.008 0.092 0.029 1.000 0.000 0.410
0.016 0.135 0.834 0.000 0.000 0.156
0.005 0.073 0.001 0.000 1.000 0.310
0.971 0.700 0.135 0.000 0.000 0.124

Intron| Exon

2401
1533
1301
2957

W

0.293
0.187
0.159
0.361

2514
1847
1567
2204

0.307
0.225
0.191
0.276
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3’ Splice Sites — C. elegans
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Nucleotide Counts for

8192 C. elegans 5’ Splice Sites

5°ss

A

Exon Intron

A 3404 4644 1518 0 0 4836 5480 837 1632 2189
C 1850 1224 583 0 14 118 588 237 801 771
G 1562 912 4891 8192 0 1890 072 oled 589 962
T 1376 1412 1200 0 8178 1348 1446 954 5170 4270

CONSENSUS x a g G T a a g t t

A 0.416 0.567 0.185 0.000 0.000 0.590 0.070 0.102 0.199 0.267
C 0.220 0.149 0.071 0.000 0.002 0.014 0.072 0.029 0.098 0.094
G 0.191 0.111 0.597 1.000 0.000 0.231 0.082 0.752 0.072 0.117
T 0.168 0.172 0.146 0.000 0.998 0.165 0.177 0.116 0.631 0.521

2218 2355
889 986
1056 827
3909 4024
W T
0.278 0.287
0.109 0.120
0.129 0.101

0.484 0.491
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5’ Splice Sites — C. elegans
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Conserved Domain in RecR and

RecR
RecM
RecR
Trsl
TOP1
ORF1
TOP1
TOP1
TOP3
TOP3
RGYR

Class | Topisomerases

RLAEERKITEVILATNPTVEGEATANY IAELC
RLODDOQVTEVILATNPNIEGEATAMY I SRLL
RVDDVGITEVITATDPNTEGEATATY LVRMV
IFRKENKIDEVITATDPAREGENTAYKILNQL
KOLAEKADHIYLATDLDREGEATAWRLREV L
AFELLKOANT I IVATDSDREGENIAWS I THKA
KDALKDADELILATDEDREGKVISWHLLOQLL
TIFDKRVKT I ILATDAAAEGEYIGRNILYRL
KREARNADYIMIWTDCDREGEYIGWE TWOQEA
KREFLHEASE IVHAGDPDREGOLLVDEVLDY L.
RNLAVEADEVLIGTDPDTEGEKIAWDLYLAL

CONSENSUS xxxXxXxxXXxXXU&uatDxxXEGexxxxXxxUxxxu
Consensus key:
Uppercase: all residues chemically similar
lowercase: most are

U,u: bulky aliphatic (I,L,V)

From RL Tatusov, SF Altschul, and EV Koonin, PNAS 91: 12091-12095

&: bulky hydrophobic (1,L,V,M,F,Y,W)

20




Probability Models for Sites
(assuming independence!)

 For each position i, 1 <i<n, let P, be a prob dist’n on the
alphabet of residues
— e.g. constructed using counts at that position in a sample of sites.

— P;(r) for each residue r is the probability that r occurs at position
| In a sequence.

» Prob dist’n P on the space S of sequences of length n is

defined by
P(s)= [ TR (s)

1<i<n
wheres =s;S,... S,
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Zero Probabilities

« If Pi(r) =0 for some I and r, then P(s) = O for some

sequences.
— may or may not be desirable

* |f due to failure to observe residue because of small sample

size,
— should perform “small-sample correction” to change P;(r) to a
small non-zero value.
— usually done by adding ‘pseudocounts’ to each value in the counts

matrix;
 e.g. add 1 to each cell (has justification in Bayesian statistics)

— Particularly an issue with proteins, due to larger alphabet size.

* |f reflects real biological constraints

— then leave as 0.
— e.g. requirement for G at position +1 (first intronic base) 1n 5’ss .



Comparing Alternative
Probability Models

« We will want to consider more than one model at a
time, in following situations:

— To differentiate between two or more hypotheses about
a sequence

— To generate increasingly refined probability models
that are progressively more accurate
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First situation arises In testing biological assertion,
e.g. “1s this a coding sequence?”
— Compare two models:

1. model associated with a hypothesis Hygiqq,

— assigns each sequence the prob of observing it under expt of
drawing a coding sequence at random from genome

2. model associated with a hypothesis H, ;. qding:

— assigns each sequence the prob of observing it under expt of
drawing a non-coding sequence at random
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Likelihood Ratios

* The likelinood of a model M given an observation
SIS
L(M|s) =P(s| M)
This 1s not the probability of the model! — (the sum
over all models is not 1).
 The likelthood ratio (LR) of two models M, and

M, IS given by LM s
LR(M, Mo |5) = [ o>
0

The numerator and denominator may both be very
small!

« The log likelihood ratio (LLR) is the logarithm of
the likelthood ratio.

25



Weight Matrices for Site Models

* LR for sites: (prob under site model) / (prob
under non-site (background) model)

P(Sl Msite) le (Si | I\/Isite)

1<i<n

P(S| I\/Ibackground) B le (Si | I\/Ibackground)

1<i<n

® LLR — Zlog(F)l (Si | Msite))_ Iog(Pl (Si | I\/Ibackground))

1<i<n

— compute by reading from a matrix whose i-th column
COﬂtaInS Va|ueS Iog(Pl (r | Msite)) - |Og(P| (r | I\/Ibackground))
for each residue r (with r labelling the rows).

« We use log,.
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Example: 3’ splice sites in C. elegans

 For background distribution take

— genomic residue freqs computed from C. elegans
chrom. I:

A 4575,132: 0.321
C 2,559,048: 0.179
G 2,555,862: 0.179
T 4,582,688: 0.321
— other choices are possible, e.g. composition of
transcribed regions
 For the site distribution we take
— site residue fregs from 8192 sites:
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Nucleotide Counts for
8192 C. elegans 3’ Splice Sites

A

A 3270 3516 2313 476
C 970 048 664 236
G 593 575 5le 144
T 3353 3453 4699 7336

CONSENSUS W W W T

A 0.400 0.429 0.282 0.058
C 0.118 0.079 0.081 0.029
G 0.072 0.070 0.063 0.018
T 0.409 0.422 0.574 0.89%

3’ss
Infron| Exon

ol 157 240 8192 0 3359 2401
129 1109 6830 0 0 1277 1533
39 595 12 0 8192 2539 1301
7957 5731 1110 0 0 1017 2957
T T C A G r W
0.008 0.092 0.029 1.000 0.000 0.410 0.293
0.016 0.135 0.834 0.000 0.000 0.156 0.187
0.005 0.073 0.001 0.000 1.000 0.310 0.159
0.971 0.700 0.135 0.000 0.000 0.124 0.3061

2514
1847
1567
2204

0.307
0.225
0.191
0.276
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Weight Matrix — 3’ Splice Sites

SITE FREQUENCIES:

A 0.400 0.429
cC 0.118 0.079
G 0.072 0.070
T 0.409 0.422

0.282
0.081
0.063
0.574

0.058
0.029
0.018
0.896

BACKGROUND FREQUENCIES:

A 0.321 0.321
c 0.179 0.179
G 0.179 0.179
T 0.321 0.321
WEIGHTS:

A 0.32 0.42
C -0.e0 -1.18
G -1.31 -1.35
T 0.35 0.39

0.321
0.179
0.179
0.321

-0.18
-1.15
-1.51

0.84

0.321
0.179
0.179
0.321

-2.46
-2.64
-3.35

1.48

.008
.016
.005
.971

o O O o

.321
.179
.179
.321

o O O o

-5.29
-3.51
-5.23

1.60

.092
.135
.073
.700

o O O o

.321
.179
.179
.321

o O O o

-1.79
-0.41
-1.30

1.12

.029
.834
.001
.135

o O O o

.321
.179
.179
.321

O O O o

-3.45
2.22
-6.93

.000
.000
.000
.000

oOooRr

.321
.179
.179
.321

o O O o

1.64

-99.00
-99.00

.000
.000
.000
.000

o R OO

.321
.179
.179
.321

o O O o

-99.00
-99.00
2.48

-1.24 -99.00 -99.00

.410
.156
.310
.124

o O O o

.321
.179
.179
.321

o O O o

0.36
-0.20
0.79
-1.37

.293
.187
.159
.361

o O O o

.321
.179
.179
.321

o O O o

-0.13
0.06
-0.17
0.17

.307
.225
.191
.2776

o O O o

.321
.179
.179
.321

o O O o

-0.06
0.33
0.10

-0.22
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H a0

Scoring a Candidate 3° Splice Site

0.32 0.42 -0.18
-0.60 -1.18 -1.15
-1.31 -1.35 -1.51

0.35 0.39 0.84

-2.46
-2.64
-3.35

1.48

-5.29
-3.51
-5.23

1.60

-1.79
-0.41
-1.30

1.12

A

-3.45

2.22
-6.93
-1.24

1.64
-99.00
-99.00
-99.00

A

-99.00
-99.00

2.48
-99.00

0.36
-0.20
0.79
-1.37

A

-0.13
0.06
-0.17
0.17

A

-0.06
0.33
0.10

-0.22

0.35+0.39 +-1.15 + 1.48 + 1.60 +-1.79 + 2.22 + 1.64 + 2.48 + 0.36 +-0.13 +-0.22

=17.23

30



« General def.: a weight matrix W has
entries w; iIndexed by residuesr e A,and 1 <j<n

 score of asequence s =(s;S,...S,) IS

ZWSjj

1<)<n

* |n the site case,
er - Iog(Pj(r | Msite)) ) Iog(Pj(r | M background))
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Simple Hypothesis Testing

» Suppose we wish to decide between two models:
— M, (the alternative hypothesis), and
— M, (the null hypothesis)

using an observation s from a sample space S. (e.g.
— S a Sequence,
— M, a site model
— M, a “background” (non-site) model.

« Strategy:

— choose a subset C — S, called the critical region for the
comparison.

— If s falls within C, reject M,, (accept M,),
— otherwise accept M, (reject M,).
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Types of Errors with Hypothesis Test

 a Type I error occurs If we reject M, when It is
true.

—For a given critical region C, the prob of
committing a Type | error iIs denoted o

o = P(C| M) = Zsc P(s | M)
* o, IS called the significance level of the test
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Sample Space S — probabilities under M,

e | error if M, true)

Critical Region C
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 a Type Il error occurs if we accept M, when it
IS false.

—For a given C, prob of committing a Type Il error
IS denoted B,

Bc=2,.cP(s|M,)=1-P(C|M,)
* - =1- [ Is called the power of the test.
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Sample Space S — probabilities under M,

Critical Region C

36



 Designing a test involves a tradeoff between
significance and power

—smaller C gives smaller Type | error but larger
Type Il error (lower power).
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Likelithood Ratio Tests

* A likelihood ratio test of models M, and M,, Is a
hypothesis test of the two models, with critical
region C defined by

C=C,={s|LR(M,, M, |s)> A}
for some non-negative constant A, the cutoff value.
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* Neyman-Pearson lemma motivates use of the
likelthood ratio as an optimal discriminator, or
“score”

— even In contexts where we aren’t explicitly testing

hypotheses.

 any monotonic function f(LR) of likelihood ratio
has equivalent optimality properties
— because defines the same set of critical regions:
LR(M,, M, | 5) = A < f(LR(M,, M, | s)) = f(A)
 convenient to take f to be the log function, In
which case we get the log likelihood ratio.
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Neyman-Pearson lemma

Let M, and M, be two models, and C , the critical region
defined by a likelihood ratio test of M, vs. M, with

— cutoff value A,
— significance level a ,, and
— powerm,=1-B,.
Then If C Is any other critical region, we have
— foac<a,,thenn.<mn,(and B->B,)
—lfoac=a,,thenn-<n, (@and B.=p,)
In other words, the likelihood ratio test with significance
level o, Is the most powerful test
— (has the lowest type Il error rate)

with that significance level.
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Idea of Neyman-Pearson lemma proof:

M, probabilities

C

M, probabilities

C

Z, < Az,

Oc < Oy
= 7y < X
= A7y < AX,

= Z, <X,

= Tc < T,




= Proof: Suppose o < a ,.Then

2 P(sIMg) < X P(s|My)

Subtract from both sides the terms involving
s e Cn C, This leaves

(1) 2 PGIMg)< > P(sIM)

seC\C, seC,\C
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By definition of the likelihood ratio test, for
any observation s,
seC, < P(s|M,)=AP(s|M,)

 From this, it follows that
@ v %P(S|Ma)< SP(s|My)

seC\C, seC\C,

and
(3) T PGIM)< Y SPGsIM,)

seC,\C seC,\C
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« Combining (2), (1), and (3)
> PGIM)< TPGEIM)< Y PGIM)< Y TP(SIM,)

seC\C, seC\C, seC,\C seC,\C

so (cancelling the common factor 1/ A)
Y. P(sIM,) < > P(sIM,)

SEC\CA SECA\C

so, adding In the terms correspondingtos e Cn C,
2 PsIM,)< > P(sIM,)
i.e n. < 1, The other part of the lemma (. < 7,
If o = a ) IS proved similarly.
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