Genome 540

Introduction to
Computational Molecular Biology:

Genome and protein sequence analysis

Today’s Lecture

e Course overview
o Administrative details

 Finding exact matches in sequences using
suffix arrays

Computational Molecular Biology

Molecular biology

N

Probability and <« » Computer science
statistics

Course Lecture Content

* DNA and protein sequences
— Algorithms
« Dynamic programming
— Probability models

« HMMs
* Information theory

We do not cover:

‘Non-linear’ (non-sequence based)
computational biology

— protein structure, expression arrays, metabolic
pathways, models for interacting molecules ...

‘Machine learning’ applications
Existing software tools

Course Prerequisites

e You must
— be able to write programs for data analysis

— have access to a computer where you can write & run
your programs

HW assignment # 1 will be a good test!
« Some previous familiarity with

— probability and statistics
— molecular biology

IS highly desirable

— (if you lack it, you will have to work harder!)

Course Requirements

Homework
NO tests or exams

Attendance at discussion section strongly
encouraged but not required

Ask questions!

— In lecture

— at discussion section
— by email

— (via message board)

Homework
* Due weekly, Sunday at midnight

— Posted on web site approx 1.5 weeks in advance
— Each is 10 pts, late penalty of 1 pt/day (max penalty 3 pts)

— Can redo
 Write computer program to analyze genomic data

set
— “From scratch”, 1.e. not using prewritten routines from
elsewhere
— Run on your own computer
— Programming language is up to you — but a compiled language
(e.g. C, C++) is recommended for efficiency reasons

« Python + Cython also works
« Interpreted language may work, but risky!

 Also: readings (in textbooks, or journal
articles)

e turn in results of analysis, and your
program, with (in some cases) a written
Interpretation of the results;

—all to be submitted by emalil in computer-
readable format

Course Info

* Instructors (contact info I1s on web page):

— Phil Green
— TA: Eliah Overbey

 Office hours by appointment (send Eliah or me an
email)

* If you did not receive the email | sent yesterday,
send me (phg@uw.edu) your email address today
(whether or not you are registered!)

10

mailto:phg@uw.edu

 Lectures: TuTh 10:30-11:50, Foege S-110

» Weekly discussion section:
— discuss homework, answer guestions
— review background material
— related topics (next-gen sequencing?)

Tentative time/place: Th 12-1, Foege S-040

— If you have a conflict, email me your schedule of
unavailable times & we will try to find another

« \Web site: http://www.phrap.org/compbio/mbt599
— will post HW assignments, copies of slides here
— has link to last year’s site — for approx syllabus & slides

11

http://www.phrap.org/compbio/mbt599

Texts (will follow only loosely):

 Biological Sequence Analysis: Probabilistic Models of
Proteins and Nucleic Acids by Durbin, Eddy, Krogh &
Mitchison. Paperback, ~$60.

« Statistical Methods In Bioinformatics : An Introduction
(Statistics for Biology and Health) by Ewens & Grant.
Hardbound, ~$105. N.B. This is the 2D edition!

« available from UW Bookstore (South Campus Center
branch) or from Amazon or Barnes & Noble

12

Finding perfectly matching
subseqguences of a sequence

 ldea (much more efficient than ‘brute force’
approach):
— suffix array (Manber & Myers, 1990)
— make list of pointers to all positions in sequence
— lexicographically sort list of strings that are pointed to

— process the list: adjacent entries are “maximally
agreeing”

13

Suffix array step 1:
List of Pointers to Suffixes

ACCTGCACTAAACCGTACACTGGGTTCAAGAGATTTCCC

ACCTGCACTAAACCGTACACTGGGTTCAAGAGATTTCCC
CCTGCACTAAACCGTACACTGGGTTCAAGAGATTTCCC
CTGCACTAAACCGTACACTGGGTTCAAGAGATTTCCC
TGCACTAAACCGTACACTGGGTTCAAGAGATTTCCC
GCACTAAACCGTACACTGGGTTCAAGAGATTTCCC
CACTAAACCGTACACTGGGTTCAAGAGATTTCCC
ACTAAACCGTACACTGGGTTCAAGAGATTTCCC
CTAAACCGTACACTGGGTTCAAGAGATTTCCC
TAAACCGTACACTGGGTTCAAGAGATTTCCC
AAACCGTACACTGGGTTCAAGAGATTTCCC
AACCGTACACTGGGTTCAAGAGATTTCCC
ACCGTACACTGGGTTCAAGAGATTTCCC

Suffix array step 2:

View as Strings to be Compared

ACCTGCACTAAACCGTACACTGGGTTCAAGAGATTTCCC

ACCTGCACTAAACCGTACACTGGGTTCAAGAGATTTCCC
CCTGCACTAAACCGTACACTGGGTTCAAGAGATTTCCC
CTGCACTAAACCGTACACTGGGTTCAAGAGATTTCCC
TGCACTAAACCGTACACTGGGTTCAAGAGATTTCCC
GCACTAAACCGTACACTGGGTTCAAGAGATTTCCC
CACTAAACCGTACACTGGGTTCAAGAGATTTCCC
ACTAAACCGTACACTGGGTTCAAGAGATTTCCC
CTAAACCGTACACTGGGTTCAAGAGATTTCCC
TAAACCGTACACTGGGTTCAAGAGATTTCCC
AAACCGTACACTGGGTTCAAGAGATTTCCC
AACCGTACACTGGGTTCAAGAGATTTCCC
ACCGTACACTGGGTTCAAGAGATTTCCC

Suffix array step 3:

Sort the Pointers Lexicographically

P1o
P11
P2s
P17
P12
P1

P19
P29
P31
P33
P27

ACCTGCACTAAACCGTACACTGGGTTCAAGAGATTTCCC

AAACCGTACACTGGGTTCAAGAGATTTCCC
AACCGTACACTGGGTTCAAGAGATTTCCC
AAGAGATTTCCC
ACACTGGGTTCAAGAGATTTCCC
ACCGTACACTGGGTTCAAGAGATTTCCC
ACCTGCACTAAACCGTACACTGGGTTCAAGAGATTTCCC
ACTAAACCGTACACTGGGTTCAAGAGATTTCCC
ACTGGGTTCAAGAGATTTCCC

AGAGATTTCCC

AGATTTCCC

ATTTCCC

CAAGAGATTTCCC

Finding Matching Subsequences
Using the Sorted List of Pointers

 Perfectly matching subsequences

— (more precisely — the pointers to the starts of those
subsequences)

are “‘near’ each other 1n the sorted list

 For a given subsequence, a longest perfect match
to It I1s adjacent to it in the sorted list

— (there may be other, equally long matches which are
not adjacent, but they are nearby).

17

(Average Case) Complexity Analysis

If N = sequence length, sorting can be done with
— O(Nlog(N)) comparisons,
— each requiring O(log(N)) steps on average,

for an overall complexity of O(N(log(N))?).

— (Processing the sorted list requires an additional O(N) steps which does not
affect the overall complexity).

Manber & Myers (1990) have more efficient algorithm (O(Nlog(N)))

several O(N) algorithms are now known — but the best
Implementations are not as fast as O(Nlog(N)) algorithms, even for
very large genomes!!

3 other, older O(N) methods (‘suffix trees’), but these are

— much less space efficient,
— harder to program, and
— (probably) slower in practice

18

« HW #1 (to be posted soon) asks you to apply this
algorithm to find

— longest perfectly matching subsequences in 2 genomic
sequences & their reverse complements.

« much faster than an O(N2) algorithm (e.g. Smith-
Waterman, or even BLAST), but

 limited to finding exact matches

19

