
1

Genome 540

Introduction to

Computational Molecular Biology:

Genome and protein sequence analysis

Today’s Lecture

• Course overview

• Administrative details

• Finding exact matches in sequences using

suffix arrays

2

3 3

Computational Molecular Biology

Molecular biology

Probability and

statistics

Computer science

Course Lecture Content

• DNA and protein sequences

– Algorithms

• Dynamic programming

– Probability models

• HMMs

• Information theory

4

We do not cover:

• ‘Non-linear’ (non-sequence based)

computational biology

– protein structure, expression arrays, metabolic

pathways, models for interacting molecules …

• ‘Machine learning’ applications

• Existing software tools

5

6 6

Course Prerequisites

• You must

– be able to write programs for data analysis

– have access to a computer where you can write & run
your programs

HW assignment # 1 will be a good test!

• Some previous familiarity with

– probability and statistics

– molecular biology

 is highly desirable

– (if you lack it, you will have to work harder!)

7 7

Course Requirements

• Homework

• No tests or exams

• Attendance at discussion section strongly

encouraged but not required

• Ask questions!

– in lecture

– at discussion section

– by email

– (via message board)

8 8

Homework

• Due weekly, Sunday at midnight
– Posted on web site approx 1.5 weeks in advance

– Each is 10 pts, late penalty of 1 pt/day (max penalty 3 pts)

– Can redo

• write computer program to analyze genomic data

set
– “From scratch”, i.e. not using prewritten routines from

elsewhere

– Run on your own computer

– Programming language is up to you – but a compiled language

(e.g. C, C++) is recommended for efficiency reasons

• Python + Cython also works

• Interpreted language may work, but risky!

• Also: readings (in textbooks, or journal

articles)

• turn in results of analysis, and your

program, with (in some cases) a written

interpretation of the results;

– all to be submitted by email in computer-

readable format

9

10 10

• Instructors (contact info is on web page):

– Phil Green

– TA: Eliah Overbey

• Office hours by appointment (send Eliah or me an
email)

• if you did not receive the email I sent yesterday,
send me (phg@uw.edu) your email address today
(whether or not you are registered!)

Course Info

mailto:phg@uw.edu

11

• Lectures: TuTh 10:30-11:50, Foege S-110

• Weekly discussion section:
– discuss homework, answer questions

– review background material

– related topics (next-gen sequencing?)

 Tentative time/place: Th 12-1, Foege S-040
– If you have a conflict, email me your schedule of

unavailable times & we will try to find another

• Web site: http://www.phrap.org/compbio/mbt599

– will post HW assignments, copies of slides here

– has link to last year’s site – for approx syllabus & slides

http://www.phrap.org/compbio/mbt599

12 12

Texts (will follow only loosely):

• Biological Sequence Analysis: Probabilistic Models of

Proteins and Nucleic Acids by Durbin, Eddy, Krogh &

Mitchison. Paperback, ~$60.

• Statistical Methods in Bioinformatics : An Introduction

(Statistics for Biology and Health) by Ewens & Grant.

Hardbound, ~$105. N.B. This is the 2D edition!

• available from UW Bookstore (South Campus Center

branch) or from Amazon or Barnes & Noble

13 13

Finding perfectly matching

subsequences of a sequence

• Idea (much more efficient than ‘brute force’

approach):

– suffix array (Manber & Myers, 1990)

– make list of pointers to all positions in sequence

– lexicographically sort list of strings that are pointed to

– process the list: adjacent entries are “maximally

agreeing”

Suffix array step 1:

List of Pointers to Suffixes
ACCTGCACTAAACCGTACACTGGGTTCAAGAGATTTCCC

ACCTGCACTAAACCGTACACTGGGTTCAAGAGATTTCCC
 CCTGCACTAAACCGTACACTGGGTTCAAGAGATTTCCC
 CTGCACTAAACCGTACACTGGGTTCAAGAGATTTCCC
 TGCACTAAACCGTACACTGGGTTCAAGAGATTTCCC
 GCACTAAACCGTACACTGGGTTCAAGAGATTTCCC

 CACTAAACCGTACACTGGGTTCAAGAGATTTCCC
ACTAAACCGTACACTGGGTTCAAGAGATTTCCC
 CTAAACCGTACACTGGGTTCAAGAGATTTCCC
 TAAACCGTACACTGGGTTCAAGAGATTTCCC
 AAACCGTACACTGGGTTCAAGAGATTTCCC
 AACCGTACACTGGGTTCAAGAGATTTCCC
 ACCGTACACTGGGTTCAAGAGATTTCCC

.

.

.

p1
p2
p3
p4
p5
p6
p7
p8
p9
p10
p11
p12

Suffix array step 2:

View as Strings to be Compared
ACCTGCACTAAACCGTACACTGGGTTCAAGAGATTTCCC

ACCTGCACTAAACCGTACACTGGGTTCAAGAGATTTCCC
CCTGCACTAAACCGTACACTGGGTTCAAGAGATTTCCC
CTGCACTAAACCGTACACTGGGTTCAAGAGATTTCCC
TGCACTAAACCGTACACTGGGTTCAAGAGATTTCCC
 GCACTAAACCGTACACTGGGTTCAAGAGATTTCCC
CACTAAACCGTACACTGGGTTCAAGAGATTTCCC
ACTAAACCGTACACTGGGTTCAAGAGATTTCCC
 CTAAACCGTACACTGGGTTCAAGAGATTTCCC
TAAACCGTACACTGGGTTCAAGAGATTTCCC
AAACCGTACACTGGGTTCAAGAGATTTCCC
AACCGTACACTGGGTTCAAGAGATTTCCC
ACCGTACACTGGGTTCAAGAGATTTCCC

.

.

.

p1
p2
p3
p4
p5
p6
p7
p8
p9
p10
p11
p12

Suffix array step 3:

Sort the Pointers Lexicographically
ACCTGCACTAAACCGTACACTGGGTTCAAGAGATTTCCC

.

.

AAACCGTACACTGGGTTCAAGAGATTTCCC
AACCGTACACTGGGTTCAAGAGATTTCCC
AAGAGATTTCCC
ACACTGGGTTCAAGAGATTTCCC

CAAGAGATTTCCC

ACCTGCACTAAACCGTACACTGGGTTCAAGAGATTTCCC
ACCGTACACTGGGTTCAAGAGATTTCCC

ACTGGGTTCAAGAGATTTCCC
ACTAAACCGTACACTGGGTTCAAGAGATTTCCC

AGAGATTTCCC
AGATTTCCC
ATTTCCC

.

p10
p11
p28
p17
p12
p1
p7
p19
p29
p31
p33
p27

17 17

Finding Matching Subsequences

Using the Sorted List of Pointers

• Perfectly matching subsequences

– (more precisely – the pointers to the starts of those

subsequences)

 are “near” each other in the sorted list

• For a given subsequence, a longest perfect match

to it is adjacent to it in the sorted list

– (there may be other, equally long matches which are

not adjacent, but they are nearby).

18 18

(Average Case) Complexity Analysis

• If N = sequence length, sorting can be done with

– O(Nlog(N)) comparisons,

– each requiring O(log(N)) steps on average,

 for an overall complexity of O(N(log(N))2).

– (Processing the sorted list requires an additional O(N) steps which does not
affect the overall complexity).

• Manber & Myers (1990) have more efficient algorithm (O(Nlog(N)))

• several O(N) algorithms are now known – but the best
implementations are not as fast as O(Nlog(N)) algorithms, even for
very large genomes!!

• other, older O(N) methods (‘suffix trees’), but these are
– much less space efficient,

– harder to program, and

– (probably) slower in practice

19 19

• HW #1 (to be posted soon) asks you to apply this

algorithm to find

– longest perfectly matching subsequences in 2 genomic

sequences & their reverse complements.

• much faster than an O(N2) algorithm (e.g. Smith-

Waterman, or even BLAST), but

• limited to finding exact matches

