
Today’s Lecture: HMMs 
 

• Definitions 

 

• Examples 

 

• Probability calculations 

– WDAG  

– Viterbi algorithm 
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HMMs: Formal Definition 

• Alphabet B = {b} of observed symbols 

• Set S = {k} of hidden states (usually k = 0,1, 2 ...,m; 0 is 
reserved for “begin” state, and sometimes also an “end” 
state) 

• (Markov chain property): prob of state occurring at given 
position depends only on immediately preceding state, and 
is given by 

transition probabilities (akl): akl = Prob(next state is l | curr state is k) 

lakl = 1, for each k. 

– Usually, many transition probabilities are set to 0.  

– Model topology is the # of states, and allowed  (i.e. akl  0)  

     transitions.  

Sometimes omit begin state, in which case need initiation 
probabilities (pk) for sequence starting in a given state 
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• Prob that symbol occurs at given sequence 
position depends only on hidden state at that 
position, and is given by  

emission probabilities:  

ek(b) = Prob(observed symbol is b | curr state is k) 

 (begin and end states do not emit symbols) 

•  Note that  

– there are no direct dependencies between observed 
symbols in the sequence, however 

– there are indirect dependencies implied by state 
dependencies 
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• Can either 

– define parameter values a priori, or  

– estimate them from training data (observed sequences 

of the type to be modelled). 

•  Usually one does a mixture of both –  

–  model topology is defined (some transitions set to 0), 

but 

–  remaining parameters estimated 

Where do the parameters come from? 
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HMM Examples 

• Site models:  

– “states” correspond to positions (columns in the tables). 

state i  transitions only to state i+1:  

• ai,i+1= 1 for all i;  

• all other aij are 0 

– emission probabilities are position-specific frequencies: 

values in frequency table columns 
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Topology for Site HMM:  

‘allowed’ transitions  

(transits with non-zero prob – all are 1) 

1 2 3 4 5 6 7 8 9 10 11 12 0 
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HMM for C. elegans 3’ Splice Sites   

 

 

A  3276  3516  2313   476    67   757   240  8192     0  3359  2401  2514  

C   970   648   664   236   129  1109  6830     0     0  1277  1533  1847  

G   593   575   516   144    39   595    12     0  8192  2539  1301  1567  

T  3353  3453  4699  7336  7957  5731  1110     0     0  1017  2957  2264  

 

 

A 0.400 0.429 0.282 0.058 0.008 0.092 0.029 1.000 0.000 0.410 0.293 0.307  

C 0.118 0.079 0.081 0.029 0.016 0.135 0.834 0.000 0.000 0.156 0.187 0.225  

G 0.072 0.070 0.063 0.018 0.005 0.073 0.001 0.000 1.000 0.310 0.159 0.191  

T 0.409 0.422 0.574 0.896 0.971 0.700 0.135 0.000 0.000 0.124 0.361 0.276  
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– Can expand model to allow omission of nuc at some 

positions by including other (downstream) transitions (or 

via “silent states”) 

– Can allow insertions by including additional states. 

– transition probabilities no longer necessarily 1 or 0 
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Insertions & Deletions in Site Model 

insertion state 

other transitions correspond 

to deletions 
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Examples (cont’d) – 1-state HMMs 

 

• single state, emitting residues with specified freqs: 

  = ‘background’ model 
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Examples (cont’d) – 2-state HMMs 

• if a11 and a22 are small (close to 0), and  

       a12 and a21 are large (close to 1),  

    then get (nearly) periodic model with period 2; e.g.  
– dinucleotide repeat in DNA, or  

– (some) beta strands in proteins.  

• if  a11 and a22 large, and  

        a12 and a21 small,  

    then get models of alternating regions of different 
compositions (specified by emission probabilities), e.g. 
– higher vs. lower G+C content regions (RNA genes in thermophilic 

bacteria); or  

– hydrophobic vs. hydrophilic regions of proteins (e.g. 
transmembrane domains).   
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2-state HMMs 
• Can find most probable state decomposition (‘Viterbi path’) 

consistent with observed sequence 

• Advantages over linked-list dynamic programming method 
(lecture 3) for finding high-scoring segments:  

– That method assumes you know appropriate parameters to find 
targeted regions; HMM method can estimate parameters. 

– HMM (easily) finds multiple segments  

– HMM can attach probabilities to alternative decompositions 

– HMM generalization to > 2 types of segments is easy – just allow 
more states! 

• Disadvantage: 

–  Markov assumption on state transitions implies geometric 
distribution for lengths of regions -- may not be appropriate 
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HMM Probabilities of Sequences 

• Prob of sequence of states 123 ... n is  
  a01

a12
a23

a34 
... an-1n

.  
• Prob of seq of observed symbols b1b2b3 ...  bn,  

     conditional on state sequence is 
e1

(b1)e2
(b2) e3

(b3) ... en
(bn) 

• Joint probability = a01
n

i=1 aii+1 
ei

(bi)  

(define ann+1 
to be 1)

  

• (Unconditional) prob of observed sequence  
= sum (of joint probs) over all possible state paths  

– not practical to compute directly, by ‘brute force’! We will use 
dynamic programming.  
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Computing HMM Probabilities 
• WDAG structure for sequence HMMs:  

– for ith position in seq (i = 1, ... n), have 2 nodes for each 
state:  

• total # nodes = 2ns + 1, where n = seq length, s = # states 

– Pair of nodes for a given state at ith position is connected 
by an emission edge 

• Weight is the emission prob for ith observed residue.  

• Can omit node pair if emission prob = 0. 

– Have transition edges connecting (right-hand) state 
nodes at position i with (left-hand) state nodes at position 
i+1 

• Weights are transition probs 

• Can omit edges with transition prob = 0.  
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WDAG for 3-state HMM,  

length n sequence 
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weights are emission 

probabilities ek(bi) for ith 

residue bi weights are transition 
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... ... 
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Beginning of Graph 

position 2  position 3 position 1  

... 

b1 b2 
b3 

begin state  
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• Paths through graph from begin node to end node 
correspond to sequences of states 

• Product weight along path  
  = joint probability of state sequence & observed symbol sequence 

• Sum of (product) path weights, over all paths,  
  = probability of observed sequence 

• Sum of (product) path weights over  
– all paths going through a particular node, or  

– all paths that include a particular edge,  

    divided by prob of observed sequence,  
 = posterior probability of that edge or node 

• Highest-weight path = highest probability state sequence 
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• By general results on WDAGs, can use dynamic 

programming to find highest weight path:  

 = “Viterbi algorithm” to find highest probability path 

(most probable “parse”) 

– in this case can use log probabilities & sum weights 

– (N.B. paths are constrained to begin at the begin 

node!) 

 



The Viterbi path is  

the most probable parse!  
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