Today's Lecture: HMMs

• Definitions

• Examples

- Probability calculations
 - -WDAG
 - Viterbi algorithm

HMMs: Formal Definition

- Alphabet **B** = {*b*} of *observed symbols*
- Set S = {k} of *hidden states* (usually k = 0,1, 2 ...,m; 0 is reserved for "begin" state, and sometimes also an "end" state)
- (Markov chain property): prob of state occurring at given position depends only on immediately preceding state, and is given by

transition probabilities (a_{kl}) : a_{kl} = Prob(next state is $l \mid$ curr state is k) $\sum_{l} a_{kl} = 1$, for each k.

- Usually, many transition probabilities are set to 0.
- Model *topology* is the # of states, and *allowed* (i.e. $a_{kl} \neq 0$) transitions.
- Sometimes omit begin state, in which case need *initiation probabilities* (p_k) for sequence starting in a given state

• Prob that symbol occurs at given sequence position depends only on hidden state at that position, and is given by

emission probabilities:

e_k(b) = Prob(observed symbol is *b* | curr state is *k*)
(begin and end states do not emit symbols)

- Note that
 - there are no *direct* dependencies between observed symbols in the sequence, however
 - there are *indirect* dependencies implied by state dependencies

Where do the parameters come from?

- Can either
 - *define* parameter values *a priori*, or
 - *estimate* them from training data (observed sequences of the type to be modelled).
- Usually one does a mixture of both
 - model topology is defined (some transitions set to 0),
 but
 - remaining parameters estimated

HMM Examples

- Site models:
 - "states" correspond to positions (columns in the tables). state i transitions only to state i+1:
 - $a_{i,i+1} = 1$ for all *i*;
 - all other a_{ij} are 0
 - emission probabilities are position-specific frequencies: values in frequency table columns

Topology for Site HMM: 'allowed' transitions (transits with non-zero prob – all are 1)

HMM for C. elegans 3' Splice Sites

- Can expand model to allow omission of nuc at some positions by including other (downstream) transitions (or via "silent states")
- Can allow insertions by including additional states.
- transition probabilities no longer necessarily 1 or 0

Insertions & Deletions in Site Model

insertion state

other transitions correspond to deletions

Examples (cont'd) – 1-state HMMs

single state, emitting residues with specified freqs:
 = 'background' model

Examples (cont'd) – 2-state HMMs

- if a₁₁ and a₂₂ are small (close to 0), and a₁₂ and a₂₁ are large (close to 1), then get (nearly) periodic model with period 2; e.g.
 - dinucleotide repeat in DNA, or
 - (some) beta strands in proteins.
- if a_{11} and a_{22} large, and

 a_{12} and a_{21} small,

then get models of alternating regions of different compositions (specified by emission probabilities), e.g.

- higher vs. lower G+C content regions (RNA genes in thermophilic bacteria); or
- hydrophobic vs. hydrophilic regions of proteins (e.g. transmembrane domains).

A A T G C C T G G A T A

2-state HMMs

- Can find most probable state decomposition ('Viterbi path') consistent with observed sequence
- Advantages over linked-list dynamic programming method (lecture 3) for finding high-scoring segments:
 - That method assumes you *know* appropriate parameters to find targeted regions; HMM method can *estimate* parameters.
 - HMM (easily) finds multiple segments
 - HMM can attach *probabilities* to alternative decompositions
 - HMM generalization to > 2 *types* of segments is easy just allow more states!
- Disadvantage:
 - Markov assumption on state transitions implies geometric distribution for lengths of regions -- may not be appropriate

HMM Probabilities of Sequences

- Prob of sequence of states $\pi_1 \pi_2 \pi_3 \dots \pi_n$ is
- Prob of seq of observed symbols $b_1b_2b_3 \dots b_n$,

conditional on state sequence is (h) = (h) + (h) = (h)

- $e_{\pi_1}(b_1)e_{\pi_2}(b_2) \ e_{\pi_3}(b_3) \dots \ e_{\pi_n}(b_n)$
- Joint probability = $a_{0\pi_1} \prod_{i=1}^n a_{\pi_i \pi_{i+1}} e_{\pi_i}(b_i)$ (define $a_{\pi_n \pi_{n+1}}$ to be 1)
- (Unconditional) prob of observed sequence
 = sum (of joint probs) over all possible state paths
 - not practical to compute directly, by 'brute force'! We will use dynamic programming.

Computing HMM Probabilities

- WDAG structure for sequence HMMs:
 - for i^{th} position in seq (i = 1, ..., n), have 2 nodes for each state:
 - total # nodes = 2ns + 1, where n = seq length, s = # states
 - Pair of nodes for a given state at *i*th position is connected by an *emission* edge
 - Weight is the emission prob for i^{th} observed residue.
 - Can omit node pair if emission prob = 0.
 - Have *transition* edges connecting (right-hand) state nodes at position *i* with (left-hand) state nodes at position i+1
 - Weights are transition probs
 - Can omit edges with transition prob = 0.

WDAG for 3-state HMM, length *n* sequence

Beginning of Graph

- *Paths* through graph from begin node to end node correspond to *sequences of states*
- *Product weight* along path
 - = *joint probability* of state sequence & observed symbol sequence
- Sum of (product) path weights, over all paths, = probability of observed sequence
- Sum of (product) path weights over
 - all paths going through a particular node, or
 - all paths that include a particular edge,
 - divided by prob of observed sequence,
 - = *posterior probability* of that edge or node
- *Highest-weight path* = *highest probability state sequence*

Path Weights

position i-1 position i position i+1

• By general results on WDAGs, can use dynamic programming to find highest weight path:

= "Viterbi algorithm" to find highest probability path (most probable "parse")

- in this case can use log probabilities & sum weights
- (N.B. paths are constrained to begin at the begin node!)

The Viterbi path is the most probable parse!