Today's Lecture: HMMs

• Definitions

• Examples

- Probability calculations
	- WDAG
	- Viterbi algorithm

HMMs: Formal Definition

- Alphabet B = {*b*} of *observed symbols*
- Set $S = \{k\}$ of *hidden states* (usually $k = 0, 1, 2, ..., m$; 0 is reserved for "begin" state, and sometimes also an "end" state)
- (Markov chain property): prob of state occurring at given position depends only on immediately preceding state, and is given by

transition probabilities (a_{kl}) : a_{kl} = Prob(next state is *l* | curr state is *k*) $\sum_{l} a_{kl} = 1$, for each *k*.

- Usually, many transition probabilities are set to 0.
- Model *topology* is the # of states, and *allowed* (i.e. $a_{kl} \neq 0$) transitions.
- Sometimes omit begin state, in which case need *initiation probabilities* (*p^k*) for sequence starting in a given state

• Prob that symbol occurs at given sequence position depends only on hidden state at that position, and is given by

emission probabilities:

 $e_k(b)$ = Prob(observed symbol is *b* | curr state is *k*) (begin and end states do not emit symbols)

- Note that
	- there are no *direct* dependencies between observed symbols in the sequence, however
	- there are *indirect* dependencies implied by state dependencies

Where do the parameters come from?

- Can either
	- *define* parameter values *a priori*, or
	- *estimate* them from training data (observed sequences of the type to be modelled).
- Usually one does a mixture of both
	- model topology is defined (some transitions set to 0), but
	- remaining parameters estimated

HMM Examples

- Site models:
	- "states" correspond to positions (columns in the tables). state *i* transitions only to state $i+1$:
		- $a_{i,i+1} = 1$ for all *i*;
		- all other a_{ij} are 0
	- emission probabilities are position-specific frequencies: values in frequency table columns

Topology for Site HMM: 'allowed' transitions (transits with non-zero prob – all are 1)

HMM for *C. elegans* 3' Splice Sites

- Can expand model to allow omission of nuc at some positions by including other (downstream) transitions (or via "silent states")
- Can allow insertions by including additional states.
- transition probabilities no longer necessarily 1 or 0

Insertions & Deletions in Site Model

insertion state

other transitions correspond to deletions

Examples $(cont²d) - 1$ -state HMMs

• single state, emitting residues with specified freqs: $=$ 'background' model

Examples (cont'd) – 2-state HMMs

- if a_{11} and a_{22} are small (close to 0), and a_{12} and a_{21} are large (close to 1), then get (nearly) periodic model with period 2; e.g.
	- dinucleotide repeat in DNA, or
	- (some) beta strands in proteins.
- if a_{11} and a_{22} large, and

 a_{12} and a_{21} small,

 then get models of alternating regions of different compositions (specified by emission probabilities), e.g.

- higher vs. lower G+C content regions (RNA genes in thermophilic bacteria); or
- hydrophobic vs. hydrophilic regions of proteins (e.g. transmembrane domains).

A A T G C C T G G A T A

2-state HMMs

- Can find most probable state decomposition ('Viterbi path') consistent with observed sequence
- Advantages over linked-list dynamic programming method (lecture 3) for finding high-scoring segments:
	- That method assumes you *know* appropriate parameters to find targeted regions; HMM method can *estimate* parameters.
	- HMM (easily) finds multiple segments
	- HMM can attach *probabilities* to alternative decompositions
	- HMM generalization to > 2 *types* of segments is easy just allow more states!
- Disadvantage:
	- Markov assumption on state transitions implies geometric distribution for lengths of regions -- may not be appropriate

HMM Probabilities of Sequences

- Prob of sequence of states $\pi_1 \pi_2 \pi_3 ... \pi_n$ is
- $a_{0\pi}^{}$ 1 a_{π} 1 π 2 a_{π} 2 π 3 a_{π} 3 π 4 $\ldots a_{\pi}$ *n*-1 π *n* . • Prob of seq of observed symbols $b_1b_2b_3... b_n$, *conditional on state sequence* is e_{π} $(b_1)e_\pi$ $(b_2) e_{\pi}$ $(b_3) ... e_{\pi}$ (b_n)
- 1 2 3 *n* • Joint probability = $a_{0\pi}$ 1 $\prod_{i=1}^n a_{\pi}$ *i* π *i+1* e_{π} *i* (b_i) (define $a_{\pi_n \pi_{n+1}}$ to be 1)
- (Unconditional) prob of observed sequence = sum (of joint probs) over all possible state paths
	- not practical to compute directly, by 'brute force'! We will use dynamic programming.

Computing HMM Probabilities

- WDAG structure for sequence HMMs:
	- for i^{th} position in seq ($i = 1, ..., n$), have 2 nodes for each state:
		- total # nodes $= 2ns + 1$, where $n =$ seq length, $s = \text{\# states}$
	- Pair of nodes for a given state at *i*th position is connected by an *emission* edge
		- Weight is the emission prob for *i*th observed residue.
		- Can omit node pair if emission prob $= 0$.
	- Have *transition* edges connecting (right-hand) state nodes at position *i* with (left-hand) state nodes at position *i*+1
		- Weights are transition probs
		- Can omit edges with transition prob $= 0$.

WDAG for 3-state HMM, length *n* sequence

Beginning of Graph

begin state

...

- *Paths* through graph from begin node to end node correspond to *sequences of states*
- *Product weight* along path
	- = *joint probability* of state sequence & observed symbol sequence
- Sum of (product) path weights, over all paths, = *probability of observed sequence*
- Sum of (product) path weights over
	- all paths going through a particular node, or
	- all paths that include a particular edge,
	- *divided by* prob of observed sequence,
		- = *posterior probability* of that edge or node
- *Highest-weight path* = *highest probability state sequence*

Path Weights

position $i+1$ position $i-1$ position *i*

- By general results on WDAGs, can use dynamic programming to find highest weight path:
	- = "Viterbi algorithm" to find highest probability path (most probable "parse")
	- in this case can use log probabilities $\&$ sum weights
	- (N.B. paths are constrained to begin at the begin node!)

The Viterbi path is the *most probable parse!*