
Today’s Lecture 

 

• Parameter estimation 

– Viterbi training 

 

• Forward & forward/backward algorithms 
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WDAG for 3-state HMM,  
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• Paths through graph from begin node to end node 
correspond to sequences of states 

• Product weight along path  

  = joint probability of state sequence & observed symbol 
sequence 

• Highest-weight path = highest probability state sequence 

• Sum of (product) path weights, over all paths,  

  = probability of observed sequence 

• Sum of (product) path weights over  
– all paths going through a particular node, or  

– all paths that include a particular edge,  

    divided by prob of observed sequence,  

 = posterior probability of that edge or node 
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Complexity 
 

• = O(|V|+|E|), i.e. total # nodes and edges.  

• # nodes = 2ns  + 2  
– where n = sequence length,  

– s = # states. 

• # edges = (n – 1)s2 + ns + 2s 
 

• So overall complexity is O(ns2)  
– (actually s2 can be reduced to # ‘allowed’ 

transitions between states – depends on model 
topology). 
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HMM Parameter Estimation 

• Suppose parameter values (transition & emission 

probs) unknown  

• Need to estimate from set of training sequences 

• Maximum likelihood (ML) estimation (= choice of 

param vals to maximize prob of data) is preferred 

– optimality properties of ML estimates discussed in 

Ewens & Grant 
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Parameter estimation when  

state sequence is known 
• When underlying state sequence for each training sequence 

is known,  

– e.g.: site model 

   then ML estimates are given by: 

– emission probabilities:  

ek(b)^ = (# times symbol b emitted by state k) / (# times state k occurs) .  

– transition probabilities:  

akl ^ = (# times state k  followed by state l) / (# times state k occurs) 

– in denominator above, omit occurrence at last position of sequence 
(for transition probabilities) 

• But include it for emission probs 

– can include pseudocounts, to incorporate prior expectations/avoid 
small sample overfitting (Bayesian justification)  
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Parameter estimation when  

state sequence unknown 
• Viterbi training  

1. choose starting parameter values 

2. find highest weight paths (Viterbi) for each sequence 

3. estimate new emission and transition probs as above, 

assuming Viterbi state sequence is true  

4. iterate steps 2 and 3 until convergence  

– not guaranteed to occur – but nearly always does 

5. does not necessarily give ML estimates, but often are 

reasonably good  



10 

A 

1 

G 

2 

C 

3 

A 

i 

T 

n 

... ... 

observed symbols 

unobserved states 

0 0 
a1 2 

e1
(A) 

a2 3 

e2
(G) e3

(C) ei
(A) en

(T) 

ai i+1 
a3 4 

a0 1 

Hidden Markov Model 



11 

More algorithms 

• Can also use dynamic programming to find 

– sum of all product path weights  

 = “forward algorithm” for probability of observed sequence 

– sum of all product path weights through particular 

node or particular edge  

 = “forward/backward algorithm” to find posterior 

probabilities 

• Now must use product weights and non-log-

transformed probabilities 

– because need to add probabilities 
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• In each case, compute successively for each 

node (by increasing depth:  left to right) 

– the sum of the weights of all paths ending at that 

node.  

– N.B. paths are constrained to begin at the begin 

node! 

• In forward/backward algorithm,  

– work through all nodes a second time, in opposite 

direction 

• i.e. in reverse graph – constraining paths to start in 

rightmost column of nodes 
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For each vertex v, let f(v) = paths p ending at vweight(p), where 

weight(p) = product of edge weights in p. Only consider paths 

starting at ‘begin’ node. 

Compute f(v) by dynam. prog:       f(v) = iwi f(vi), where                  

vi ranges over the parents of v, and                                                      

wi = weight of the edge from vi to v. 

Similarly for b(v) = p beginning at vweight(p)  

The paths beginning at v are the ones ending at v in the reverse (or inverted) 

graph 
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w 
v’ v 

f(v)b(v) = sum of the path weights of all paths through v.  

f(v’) 
f(v) b(v) 

f(v’)wb(v) = sum of the path weights of all paths through the 

edge (v’,v) 
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• Numerical issues: multiplying many small values 
can cause underflow. Remedies: 

 

– Scale weights to be close to 1 (affects all paths by same 
constant factor – which can be multiplied back later); or 

 

– (where possible) use log weights, so can add instead of 
multiplying. 

 

– see Rabiner & Tobias Mann links on web page  
• & will discuss further in discussion section 


