
Today’s Lecture 

 

• Forward/Backward algorithm 

 

• Baum-Welch training 
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WDAG for 3-state HMM,  

length n sequence 

position i  position i+1 position i-1  

weights are emission 

probabilities ek(bi) for ith 

residue bi weights are transition 

probabilities akl 
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For each vertex v, let f(v) = paths p ending at vweight(p), where 

weight(p) = product of edge weights in p. Only consider paths 

starting at ‘begin’ node. 

Compute f(v) by dynam. prog:       f(v) = iwi f(vi), where                  

vi ranges over the parents of v, and                                                      

wi = weight of the edge from vi to v. 

Similarly for b(v) = p beginning at vweight(p)  

The paths beginning at v are the ones ending at v in the reverse (or inverted) 

graph 
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w 
v’ v 

f(v)b(v) = sum of the path weights of all paths through v.  

f(v’) 
f(v) b(v) 

f(v’)wb(v) = sum of the path weights of all paths through the 

edge (v’,v) 
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• Numerical issues: multiplying many small values 
can cause underflow. Remedies: 

 

– Scale weights to be close to 1 (affects all paths by same 
constant factor – which can be multiplied back later); or 

 

– (where possible) use log weights, so can add instead of 
multiplying. 

 

– see Rabiner & Tobias Mann links on web page  
• & will discuss further in discussion section 



• Work through graph in forward direction:  

– compute and store f(v) 

• Then work through graph in backward direction: 

–  compute b(v) 

– compute f(v) b(v) and f(v)wb(v)  as above, store in 

appropriate cumulative sums 

– only need to store b(v) until have computed b’s at 

next position 

• Posterior probability of being in state s at 

position i is f(v) b(v) / total sequence prob  

– where v is the corresponding graph node 

 
6 

Forward/backward algorithm 
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• Special case of EM (‘expectation-maximization’) 

algorithm  

• like Viterbi training, but  

– uses all paths, each weighted by its probability  

    rather than just highest probability path.  

• sometimes give significantly better results than 

Viterbi  

– e.g. for PFAM 

 

Baum-Welch training 
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– An edge in the WDAG contributes fractional (or 

weighted) counts given by its posterior 

probability:  
 

– (*):    (all paths p through edge e weight(p)) / (all paths p weight(p))  

 

(Fractional counts are computed using forward-

backward algorithm) 

 

Implementing Baum-Welch 
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w 
v’ v 

f(v)b(v) = sum of the path weights of all paths through v.  

f(v’) 
f(v) b(v) 

f(v’)wb(v) = sum of the path weights of all paths through the 

edge (v’,v) 

 



10 

– Compute new param estimates 

• ek(b)^ = (frac. # times symbol b emitted by state k) / 

(frac. # times state k occurs)  

• akl ^ = (frac. # times state k  followed by state l) / (frac. 

# times state k occurs)  
– (In denom,, omit frac counts at last position of sequence) 

    where “frac. # times” is given by (*) for 

appropriate edge type (emission or transition) 
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– New Baum-Welch parameter estimates have 

higher likelihood  

• general property of EM algorithm  

• not true in general for Viterbi training 

 

– Iterate: get series of estimates converging to a 

local maximum on likelihood surface 
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Search of parameter space 

• ML estimates correspond by definition to global 

maximum;  

• but there may be many local maxima, and EM or 

Viterbi search can get “trapped” in one 

• remedies:  

– Consider multiple starts (multiple choices for starting 

parameters)  

– use “reasonable values” to start search (e.g. unlikely 

transitions should be given small initial probabilities) 
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– Allow search to “jump” out of local maxima: 

• Add “noise” to counts at each iteration; gradually reduce the 

amount of noise 

• Use Viterbi-like training, but  

– sample paths probabilistically  

» (in retracing Viterbi path, choose edge at random according to its 

prob, rather than taking highest prob parent);  

– use “temperature” T to adjust probabilities;  

» initially with large T making all probs approximately equal;  

» then gradually reduce T  

– similar to Gibbs sampler 



14 

Probabilistic Viterbi Backtracking 

choose parent vi with probability wi f(vi) / f(v). For large T, 

all parents almost equally likely to be chosen; for small T, 

strongly favor largest (max) wi f(vi) 
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v 

reset all weights w to w1/T. For large T ( >> 1), this makes 

distinct w’s relatively close; for small T (<< 1), relatively 

far apart 

given choice of paths, re-estimate weights; iterate 


