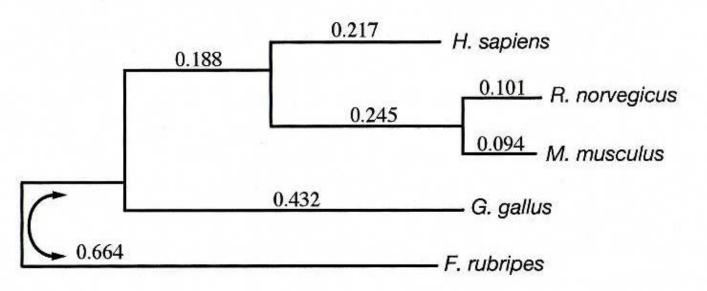
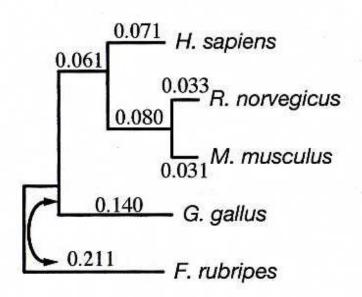

Today's Lecture

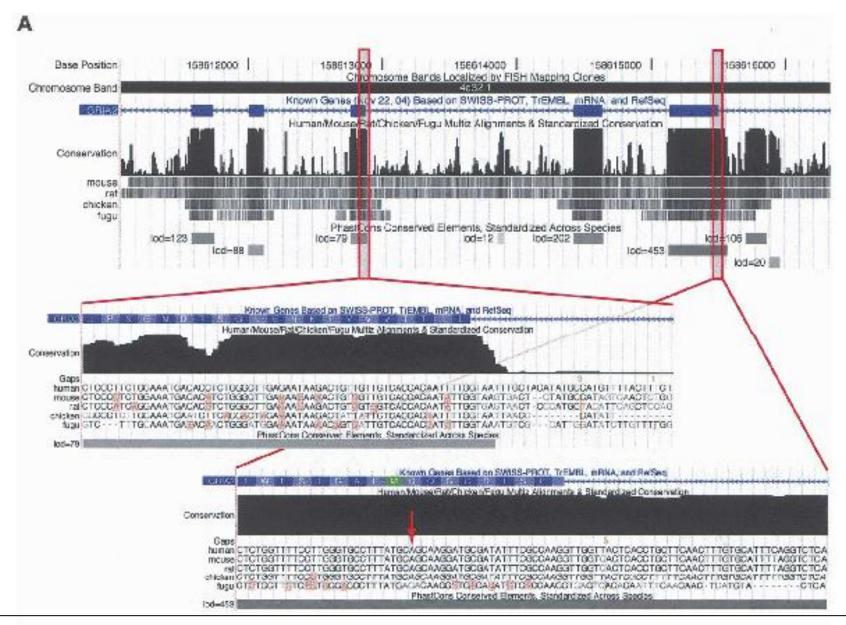
• PhastCons


PhastCons PhyloHMM


$$\mu = a_{cn}$$

$$v = a_{nc}$$

Nonconserved

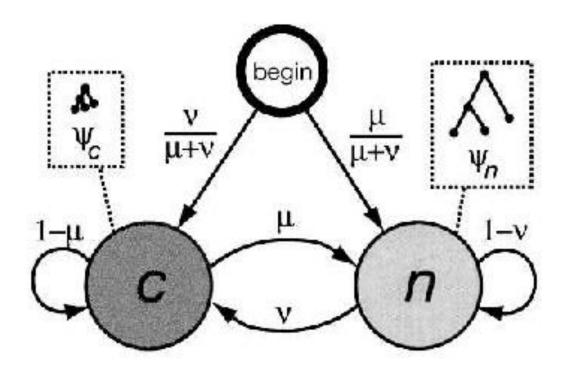


Conserved

• branch lengths:

- Expected # substitutions/site over corresponding evolutionary time period
- for neutral state, should reflect underlying mutation rate
- for conserved state: mutation rate \times scaling factor ρ
 - ρ = frac of mutations that escape purifying selection
 - $\rho \approx .33$ (for vertebrates)

from Siepel A. et al. (2005). Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes. Genome Res. 15:1034-50.

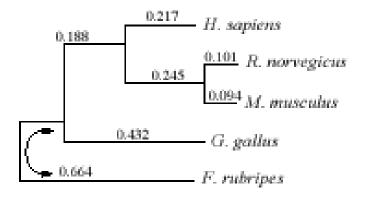

Some general issues in applying probability models, in the PhyloHMM context

- Is the model computable?
- Is the model 'reasonable'?
 - 2 states enough?
 - Markov condition on transition probabilities
- How good is the input data?
 - Alignability of neutral sequence
 - Accuracy of genome sequence alignments
- Are results reliable?
 - No true 'test set' instead, putative false positive rate,
 and 'biological plausibility' of findings

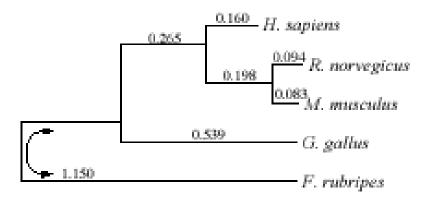
Alignment issues

- Multiz: progressive pairwise alignments
- accurate multiple genome alignment not a solved problem!
 - statistical assessment: Prakash & Tompa (2005, 2007, 2009)
 - ENCODE region alignment analyses: Margulies EH et al. 2007
 - major issues:
 - accurate gap placement (even for close species!!)
 - discrimination among paralogous sequences (e.g. repeats, duplications)
- inaccurate alignments cause
 - neutral rate to be overestimated
 - conserved segments to be overidentified
 - because more slowly mutating (or better aligned) neutral segments may be called conserved

PhastCons PhyloHMM

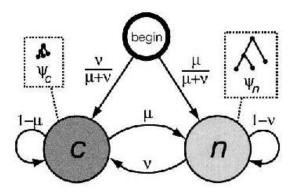


$$a = a_{cn}$$


$$v = a_{nc}$$

- for distantly related species, neutrally evolving regions no longer alignable
 - analyze 4D sites in coding sequences to estimate neutral rates
 - CDS alignments much more reliable, but
 - synonymous sites somewhat atypical (some selection; composition & mutation patterns)

PhastCons Nonconserved



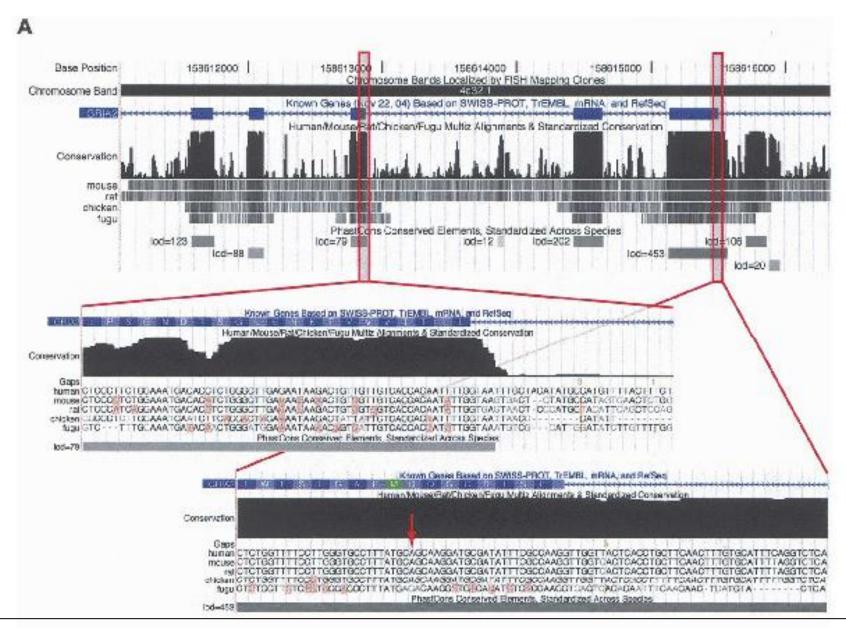
Fourfold Degenerate

Notation

- $\mu = a_{cn}$, $\omega = 1/\mu$ (expected length of conserved elt)
- $v = a_{nc}$
- expected 'coverage' γ (frac of genome that is conserved):
 - = Elen (cons seg) / (Elen(cons seg) + (Elen(neut seg))
 - $= (1/\mu) / (1/\mu + 1/\nu)$
 - $= v/(\mu + v)$

- transition probs imply *a priori* length dist'ns for conserved & non-conserved segments
 - prob(cons seg has length n) is

$$(a_{cc})^{n-1}a_{cn} = (a_{cc})^{n-1}(1 - a_{cc})$$


- geometric distribution
- expected length (Elen) ω of conserved segment is

$$1.0 / (1 - a_{cc}) = 1.0 / a_{cn}$$

special case: $a_{cc} = .5 = a_{nn} \Rightarrow$ positions are independent

PhastCons Parameter Estimation

- parameters estimated separately in 1 Mb windows using EM algorithm
 - full maximum likelihood analysis, or
 - constraining some parameters
 - & averaged over genome
- full MLE results don't match biologists' intuition -- too much 'smoothing':
 - fewer, & larger, conserved elements
 - long, apparently non-conserved regions within conserved elements
 - attributed to fact that (prior) geometric length dist'n inappropriate

from Siepel A. et al. (2005). Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes. Genome Res. 15:1034-50.

Group	Method	Total no.a	Ave. len. ^b	Cov.c	CDS $cov.^d$	μ	ν	ω	γ	L_{\min}
vert.	MLE	561,103	216.1	4.2%	68.8%	0.018	0.004	55.4	0.191	30.4
	55%	1,058,855	75.3	2.8%	56.8%	0.125	0.029	8.0	0.187	12.9
	65%°	1,157,180	103.5	4.2%	66.1%	0.083	0.030	12.0	0.265	16.0
	75%	1,381,978	167.5	8.1%	76.6%	0.043	0.031	23.0	0.415	22.6
					-		9 4 -	mm / I		
Group	Method	Total no. a	Ave. len. ^b	$Cov.^c$	CDS cov.	r CDS	S frac. e	$H(oldsymbol{\psi}_c$	$ \psi_n\rangle$	L_{\min}
xxovt.	65%	1,157,180	103.5	4.2%	66.1%	Ó	18.0%		0.611	16.0

3.0%

64.2%

24.0%

0.854

4d

vert.

797,777

109.3

11.0

Instead: -- impose constraints

- coverage constraint:
 - 65% of coding bases covered by conserved elts
 - (target value based on earlier mouse/human analysis)
- smoothness constraint:
 - PIT (≡ expected min. amt of phylogenetic info required to predict a conserved element)
 - = 9.8 bits
 - (forced to be same for all species groups)

- constraints met by 'tuning' γ and ω (or equivalently transit probs)
 - choose γ and ω ,
 - get ML estimates of other parameters by EM algorithm
 - see whether get desired coverage & PIT;
 - if not, adjust γ and ω & redo