Today's Lecture

• PhastCons

• Karlin-Altschul theory

Notation

- $\mu = a_{cn}$, $\omega = 1/\mu$ (expected length of conserved elt)
- $v = a_{nc}$
- expected 'coverage' γ (frac of genome that is conserved):
 - = Elen (cons seg) / (Elen(cons seg) + (Elen(neut seg))
 - $= (1/\mu) / (1/\mu + 1/\nu)$
 - $= \nu / (\mu + \nu)$

Instead: -- impose constraints

- coverage constraint:
 - 65% of coding bases covered by conserved elts
 - (target value based on earlier mouse/human analysis)
- smoothness constraint:
 - PIT (= expected min. amt of phylogenetic info required to predict a conserved element)
 = 9.8 bits
 - (forced to be same for all species groups)

- constraints met by 'tuning' γ and ω (or equivalently transit probs)
 - choose γ and ω ,
 - get ML estimates of other parameters by EM algorithm
 - see whether get desired coverage & PIT
 - if not, adjust γ and ω & redo

- L_{\min} : expected min length of a conserved segment that could appear in a Viterbi path
- at L_{\min} ,

expected loglike of staying in state n

= expected loglike of switching to c & back again, so

$$(L_{\min}+1)\log(1-\nu) + L_{\min}\sum_{x} P(x|\boldsymbol{\psi}_{c})\log P(x|\boldsymbol{\psi}_{n})$$

$$= \log \nu + \log \mu + (L_{\min} - 1) \log(1 - \mu) + L_{\min} \sum_{x} P(x|\boldsymbol{\psi}_{c}) \log P(x|\boldsymbol{\psi}_{c})$$

•
$$L_{\min} = \frac{\log \nu + \log \mu - \log(1 - \nu) - \log(1 - \mu)}{\log(1 - \nu) - \log(1 - \mu) - H(\psi_c || \psi_n)}$$

• where $H(\psi_c || \psi_n) = \sum_x P(x | \psi_c) \log \frac{P(x | \psi_c)}{P(x | \psi_n)}$ = rel entropy of *c*-state emission prob dist'n w.r.t. *n*-state dist'n

• PIT (phylogenetic information threshold) = $L_{\min}H(\psi_c||\psi_n)$

= 'expected min amt of phylogenetic info required to predict conserved element'

- Final param estimates (for vertebrates):
 - $-\gamma = 0.265$
 - $-\omega = 12.0 \text{ bp}$
 - $-H(\psi_{\rm c} \parallel \psi_{\rm n}) = .608$ bits / site
 - $-L_{\min} = 16.1 \text{ bp}$
 - $\text{PIT} = L_{\min} H(\psi_c || \psi_n) = 9.8 \text{ bits}$

Group	Method	Total no. ^{a}	Ave. len. ^b	Cov. ^c	$CDS \text{ cov.}^{d}$	μ	ν	ω	γ	L_{\min}
	MLE	561,103	216.1	4.2%	68.8%	0.018	0.004	55.4	0.191	-30.4
	55%	1,058,855	75.3	2.8%	56.8%	0.125	0.029	8.0	0.187	-12.9
vert.	$65\%^{c}$	1,157,180	103.5	4.2%	66.1%	0.083	0.030	12.0	0.265	-16.0
	75%	1,381,978	167.5	8.1%	76.6%	0.043	0.031	23.0	0.415	-22.6
Chan	Mathad	Total no a	Arra lon b	Corr	CDC corr (2 frage	$\mathbf{U}(a)$	(al-)	r
Group	Method	Total no.~	Ave. len. [•]	Cov	CDS COV.	- UDi	5 mac.~	$-\pi \langle \psi_c \rangle$	$ \psi_n\rangle$	L_{\min}
vert.	65%	$1,\!157,\!180$	103.5	4.2%	66.1%	5	18.0%		0.611	16.0
	4d	797,777	109.3	3.0%	64.2%	, D	24.0%		0.854	11.0

Estimating false positive rates

- simulate 1 Mb alignment
 - by sampling 4D sites (with replacement) from aligned CDSs
 - caveat: these not typical of all neutral sites!
- predict cons elts (using prev param estimates)
- frac of bases in cons elts:

Group	65%	75%	MLE
vertebrate	0.00279^{a}	0.00362	0.00005
insect	0.00286	0.01026	0.00152
worm	0.00000	0.00000	0.00000
yeast	0.00006	0.00042	0.00023

- does not address (important) issue of rate of false positive bases within, or flanking, true conserved elements
- also: genes more G+C rich than genome average, & have somewhat higher mutation rate (due in part to more frequent CpGs)

 \Rightarrow *underestimating* false pos rate

• also: randomization procedure destroys underlying mutation rate variation

 \Rightarrow *underestimating* false pos rate

Characteristics of phastCons predicted conserved elements

- 1.18 million elements
- constitute 4.3% of human sequence
 - 66% of coding bases
 - 88% of coding exons overlap predicted elt
 - 23% of 5'UTR bases
 - 63% of exons
 - 18% of 3'UTR bases
 - 64% of exons
 - 42% of RNA gene bases
 - 56% of genes
 - 3.6% of intronic bases
 - 2.7% of intergenic bases
 - < 1% of mammalian 'ancestral repeats' (ARs)

from Siepel A. et al. (2005). Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes. Genome Res. 15:1034-50.

Context for Karlin-Altschul Theory for Maximal Segment Analysis

- Linked list, with labels attached to edges, e.g.
 - a sequence graph: labels = sequence residues
 - (ungapped) aligned pair of seqs: labels = possible alignment columns (pairs of residues)
- edge weights depend only on labels:
 - each label is assigned a weight $W(s) = w_s$

• in backgd model, each label *s* occurs with probability $P(s) = p_s$ where

-P = prob dist'n on sample space $S = \{$ labels $\}$

Methods for Computing Statistical Significance of Maximal Segment Scores

- 1. exact prob dist'n
- 2. approximate formula (Karlin-Altschul)
- 3. from simulated sequences
- 4. from real biological 'background' sequences
 - i.e. not having feature in question
- 1, 2, 3 require prob model approximating biological reality; 4 requires an appropriate dataset
- 2 is faster than 1 or 3, but involves add'l approximations (ignores 'edge effects')
- 1 requires more complex algorithm

Exact Score Dist'n for Segments in WLLs

- Exact score dist'n (following proof allows position-specific scores and probabilities):
 - Let $P_{k,m}^{(i)}$ = prob that :
 - highest-scoring path ending at position i has score k, and also
 - highest scoring path *ending at any pos'n* $\leq i$ has score *m*
 - special cases:
 - $P_{k,m}^{(i)} = 0$ if k < 0 or m < k;
 - $P_{0,0}^{(0)} = 1$,
 - $P_{k,m}^{(0)} = 0$ if *k* or $m \neq 0$
 - dist'n of maximum score is $P_m = \sum_{k \le m} P_{k,m}^{(N)}$. (N = seq length)

- Algorithm to compute $\{P_{k,m}^{(i)}\}$ from $\{P_{k,m}^{(i-1)}\}$: - If 0 < k < m
 - (\Rightarrow best path ending at position *i* cannot start at *i*, and best path ending at position $\le i 1$ must have score = m)

then
$$P_{k,m}^{(i)} = \sum_{j} p_j^{(i)} P_{k-j,m}^{(i-1)}$$

- if $0 < k = m$

• (\Rightarrow best path ending at position $\le i - 1$ may have score $\le m$)

then
$$P_{k,m}^{(i)} = \sum_{j} p_j^{(i)} \sum_{n \le m} P_{k-j,n}^{(i-1)}$$

 $- P_{0,m}^{(i)} = \sum_{j} p_j^{(i)} \sum_{n \le -j} P_{n,m}^{(i-1)}$
 $-$ stop when *i* reaches *N*

- Can incorporate Markov chain dependencies in sequence probs:
 - just keep track of preceding residue *r* as well as k,m: $P_{r,k,m}^{(i)}$.
- Reduce required memory by truncating for large *m*, with appropriate modifications.
- Would like to have generalization to arbitrary DAG (e.g. edit graphs for sequence alignment)!
 - Difficult, because $P_{k,m}^{(v)}$ not independent for different parent vertices v

Why Is *Approximation* to Exact Score Distribution of Interest?

- faster to compute: useful for database searches
- gives better intuition for score behavior
- *Form* of approximation extends to other situations
 e.g. gapped alignments

where exact dist'n currently unavailable

Approximate Score Distribution for High-Scoring Segments in WLLs: Karlin-Altschul theory

- Main reason why BLAST is most widely used computational biology tool!
- Ideas closely related to
 - classical random walk and gambler's ruin problems in probability theory
 - (cf. W. Feller, An Introduction to Probability Theory and Its Applications),
 - sequential sampling in statistics