
Today’s Lecture 

 

• PhastCons 

 

• Karlin-Altschul theory 
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Notation 

•  = acn   ,  = 1/ (expected length of conserved 

elt) 

•  = anc 

• expected ‘coverage’  (frac of genome that is 

conserved): 

= Elen (cons seg) / (Elen(cons seg) + (Elen(neut seg)) 

=   (1/) / (1/ + 1/) 

=   / ( + ) 
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Instead: -- impose constraints 

• coverage constraint:  

– 65% of coding bases covered by conserved elts 

– (target value based on earlier mouse/human 

analysis) 

• smoothness constraint:  

– PIT ( expected min. amt of phylogenetic info 

required to predict a conserved element)  

   = 9.8 bits  

• (forced to be same for all species groups) 
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• constraints met by ‘tuning’  and  (or equivalently 

transit probs) 

– choose  and ,  

– get ML estimates of other parameters by EM algorithm 

– see whether get desired coverage & PIT 

– if not, adjust  and  & redo 
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• Lmin: expected min length of a conserved 

segment that could appear in a Viterbi path 

• at Lmin ,  

expected loglike of staying in state n  

= expected loglike of switching to c & back 

again, so 

 

 

 

•  
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• where 

 

    = rel entropy of c-state emission prob dist’n 
w.r.t. 

       n-state dist’n 

 

• PIT (phylogenetic information threshold) 

       = 

     =  ‘expected min amt of phylogenetic info 
required to predict conserved element’ 
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• Final param estimates (for vertebrates): 

–  = 0.265 

–  = 12.0 bp 

– H(c|| n) = .608 bits / site 

– Lmin = 16.1 bp 

– PIT = Lmin H(c|| n) = 9.8 bits 



8 
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Estimating false positive rates 

• simulate 1 Mb alignment  

– by sampling 4D sites (with replacement) from aligned 

CDSs 

– caveat: these not typical of all neutral sites! 

• predict cons elts (using prev param estimates) 

• frac of bases in cons elts: 
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• does not address (important) issue of rate of false 

positive bases within, or flanking, true conserved 

elements 

• also: genes more G+C rich than genome average, 

& have somewhat higher mutation rate (due in 

part to more frequent CpGs) 

  underestimating false pos rate 

• also: randomization procedure destroys 

underlying mutation rate variation  

 underestimating false pos rate 
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Characteristics of phastCons predicted 

conserved elements 
• 1.18 million elements 

• constitute 4.3% of human sequence 

– 66% of coding bases  

• 88% of coding exons overlap predicted elt 

– 23% of 5’UTR bases 

• 63% of exons 

– 18% of 3’UTR bases 

• 64% of exons 

– 42% of RNA gene bases 

• 56% of genes 

– 3.6% of intronic bases 

– 2.7% of intergenic bases 

– < 1% of mammalian ‘ancestral repeats’ (ARs) 
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from Siepel A. et al. (2005). Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes. Genome Res. 15:1034-50.  
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• Linked list, with labels attached to edges, e.g. 

– a sequence graph: labels = sequence residues 

– (ungapped) aligned pair of seqs: labels = possible 

alignment columns (pairs of residues) 

• edge weights depend only on labels: 

– each label is assigned a weight W(s) = ws 

Context for Karlin-Altschul Theory for  

Maximal Segment Analysis 

A C C G C T G C G A A G 
-2 1 1 1 1 -2 1 1  -2 1 -2 1 
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• in backgd model, each label s occurs with 

probability  P(s) = ps    where 

– P = prob dist’n on sample space S = {labels} 
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Methods for Computing Statistical Significance  

of Maximal Segment Scores 

1. exact prob dist’n 

2. approximate formula (Karlin-Altschul) 

3. from simulated sequences 

4. from real biological ‘background’ sequences  

– i.e. not having feature in question 

 

1, 2, 3 require prob model approximating biological reality; 4 
requires an appropriate dataset 

2 is faster than 1 or 3, but involves add’l approximations 
(ignores ‘edge effects’)  

1 requires more complex algorithm 
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Exact Score Dist’n for  

Segments in WLLs 

• Exact score dist’n (following proof allows position-

specific scores and probabilities): 

– Let Pk,m
(i) = prob that : 

• highest-scoring path ending at position i has score k, and also 

• highest scoring path ending at any pos’n  i  has score m  

– special cases: 

• Pk,m
(i) = 0 if k < 0 or m < k;  

• P0,0
(0) = 1,  

• Pk,m
(0) = 0 if k or m  0 

– dist’n of maximum score is Pm = km
 Pk,m

(N).  
(N = seq length) 



17 

•  Algorithm to compute {Pk,m
(i)} from {Pk,m

(i-1)} :  
– If 0 < k < m  

• ( best path ending at position i cannot start at i, and best path 
ending at position  i – 1 must have score = m)  
            

   then Pk,m
(i) = j pj

(i)Pk-j,m
(i-1) 

– if 0 < k = m  
• ( best path ending at position  i – 1 may have score  m)  

           

   then Pk,m
(i) = j pj

(i) nm
 Pk-j,n

(i-1)  

– P0,m
(i) = j pj

(i) n-j
 Pn,m

(i-1) 

– stop when i reaches N 
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• Can incorporate Markov chain dependencies in 

sequence probs:  

– just keep track of preceding residue r as well as k,m : 

Pr,k,m
(i). 

• Reduce required memory by truncating for large m, 

with appropriate modifications. 

• Would like to have generalization to arbitrary DAG 

(e.g. edit graphs for sequence alignment)!  

– Difficult, because Pk,m
(v) not independent for different 

parent vertices v 
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Why Is Approximation to Exact Score 

Distribution of Interest? 

• faster to compute: useful for database searches 

• gives better intuition for score behavior 

• Form of approximation extends to other situations  

– e.g. gapped alignments 

    where exact dist’n currently unavailable 
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Approximate Score Distribution for  

High-Scoring Segments in WLLs:  

Karlin-Altschul theory 

• Main reason why BLAST is most widely used 

computational biology tool!  

• Ideas closely related to  

– classical random walk and gambler’s ruin problems in 

probability theory  

• (cf. W. Feller, An Introduction to Probability Theory and Its 

Applications), 

– sequential sampling in statistics 


