Today’s Lecture

 Karlin-Altschul theory

 Information theory



Context for Karlin-Altschul Theory for
Maximal Segment Analysis

 Linked list, with labels attached to edges, e.g.
— a seguence graph: labels = sequence residues

— (ungapped) aligned pair of segs: labels = possible
alignment columns (pairs of residues)

» edge weights depend only on labels:
— each label is assigned a weight W(s) = w,
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Karlin-Altschul Theory

 Scoring systems: What Is appropriate scoring
system (choice of edge weights) for detecting
‘target’ features 1n a biological sequence?
— Answer: if symbol r occurs with freq

e t_in target segments, and
* b, elsewhere (‘background’)

the best score Is
s, = log(t, / b, )
 N.B. requires knowing (approximately) these frequencies!

— Moreover, any ‘interesting’ scoring system can be
expressed in above form



« Statistical Significance:

Expected # maximal segs of score > S in ‘backgd’
seguence Is

NKe-45

where
— Al1s ascaling factor to convert scores to LLR scale,
— N = sequence length
— K is constant (depends on scoring system, but not on S or N)

 (Is above also true for maximal D-segments?)



Scoring systems
(Choice of edge weights in WLLS):

 assume position independent scores w, probabilities

Pw
» reasonable constraints on weights are

— at least one score Is > 0O:
» if none are, then maximal scoring paths have score 0 & are
trivial;
— expected score is < 0:

» If >0, then maximal scoring paths in random seqs will tend to
extend through entire sequence

— more suitable for ‘global’ than ‘local’ analyses

» above constraints < can assume weights are scaled
LLRs (will show later)



 Can choose prob dist’ns P, Q, to optimize

discrimination of regions to be detected (like an
LLR test):

— P corresponds to backgd dist’n

e Sseqguence graph: average composition of sequences being
scanned

« pairwise alignment: random pairs of residues
— Q corresponds to target dist’n

e seguence graph: composition of regions to be detected —e.g. to
detect hydrophobic regions in protein, use residue fregs in
observed hydrophobic regions

« pairwise alignment. homologous residue pairs in evolutionarily
related sequences



Example where LLR welights aren 't a natural choice:
quality trimming of sequencing reads

assume have error probs for base calls:

— e; = error prob for i-th base call in read, 1<i<N where N = read
Iength

want to trim read to that part having error rate < a specified

target rate

— e.0..05

construct linked-list directed graph with N edges, & set
w; = .05 — ¢,

as weight on i-th eclge

highest weight path in graph has property that any segment
extending path has negative score

— 1.e. avg error rate in extension > .05.




extension must have extension must have
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Scores on Probability Spaces

« A scoring system on a prob space (S,P) is function

W: S - R ( R =real numbers).
— W(s) is called the score (or weight) of s.

«  Example: for any prob dist’'n Q # P on S, the LLR
score W(s) = log,(Q(s)/P(s)).
This has properties (writing p., ., W, for P(s), Q(s),
W(s))
1. w,>0for at least one s

— otherwise g, < p,for all s, and g < p, for at least one s since
Q = P; butthen 2, g.< 2 p,=1, so Q is not a probability distribution.

2. 2. P.W, <0 (by the information inequality)



« above properties also hold for “scaled” LLR
log,(q./p) / A where A > 0.

 conversely, any scoring system W satisfying above two
properties is of form log,(q./p,) / A, for a unique A and Q

(A depends on b):

Proof: Take b = e for convenience.

AW isaLLR < eMs=q./p, for some prob dist’n Q
Z §“WS —
< 2.p.e

-. If define
f(A) = 2.gp,e™s

then it is enough to show f(A) =1 for a unique A > 0, because
can then take

Os = Pser's
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« f(A)=1forr=0, f(A)>0forall A

« the derivative f°(A) = 2., p;w*"s, so f(0) = 2 p, W, <0,
l.e. f decreasing at 0

e . 3u>0withf(u)<f(0)=1

e f(A)—00 as A—»o0 since by assumption some w, > 0

e - f(A)=1forsomer>nu>0

e fIs convex

— l.e. forany A, and A, , line segment from the point (A,,f(A,)) to
(A,,f(A,)) lies above graph of f ()

since its terms p.e* s are convex,

e . Jatmostone A >0withf(A) =1
— otherwise graph would have > 3 pointson liney =1

— this completes the proof.
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Karlin-Altschul theory (cont’d)

expected # of maximal segments with scores > a,
in ‘bkgd’ sequence of length N IS

NKe-42

where A, K are constants depending on scoring
system

— A (as discussed previously) rescales scores to be LLRs
method assumes sequence Is very long

— 1.e. doesn’t allow for “edge effects”
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Intuition (not a proof!) for K-A formula

» Consider the space of sequences of a fixed
length n <N
— (think of these as the possible subsequences of

length n starting at a particular location within a
larger sequence of length N.

» Assume LLR scoring system (1 = 1):

— score(s) = log(Q(s) / P(s)), for any sequence s of
length n, where

* P =backgd dist’n
« Q= target dist’n
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Intuition cont’d

« What is the total probability of all sequences of

score > a?

log(Q(s) / P(s)) > a

= Q(S)/P(s)> e

=  P(s) < e?@ Q(s)
Summing over all such s:

Y P(s)< e?X . Q(s) = ked =ke
forsome k<1
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Intuition cont’d

 (Very) roughly speaking, averaging over
possible sequence lengths n < N, and
summing over the N possible start points
within a sequence of length N, get NKe-#2

* A Dbetter (but still incomplete) argument Is
given In the following slides.
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Scores on Probability Spaces
(cont’d)

e convenientto

— assume W takes on integral values

 rescale and round

— (loss of precision can be made as small as desired by taking scaling
factor large enough);

— replace original prob space by one induced on the
Integers by the random variable W — so
» the sample points are integers
* prob associated to the integer K is ZS:WS:k P,

» the weight function is now the identity
— 1.e. weight associated to k is k.
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Maximal Segments

any extension must

have negative score . :
ave neg m%mmum-scormg

segment J

any extension must
have negative score

|
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want prob that maximal segment of score > a
starts at position i

this requires two independent events to occur:

1. cumulative score
— starting from value of 0 and
— adding successive scores while moving to the right from
pos’n I,
must reach value > a before reaching value < 0.
Call prob of this P,

18



Moving to right, cumulative score
reaches > a before negative value

a

Cumulative
score from
position |

Position in sequence
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2. for any J <1, score of segment from jtoi—11s<0
Equivalently,

» starting from score 0 and
» adding successive scores while moving to left from pos’n |
-1
» (and not resetting neg scores to 0)
the score remains < 0. This requires that
» the score k at position 1 — 1 is negative

 cumulative score moving from i1 — 1 leftward never gets
back to 0 from k

Call prob of this P,
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Moving to left, cumul score always <0

Cumulative
score from
position i-1

0 ____________________________.: ________________________________________

Position in sequence

21



Analogy to random walk/gambler’s ruin

 cumulative score, counting from particular position In
sequence, corresponds to
— total distance walked, or
— gambler’s net worth
« Wwith each step having probability p, of moving distance k
— k positive = forwards
— k negative = backwards
* stop when reach
— value < 0 (out of money!); or
— value > a

“random walk with absorbing barriers at 0 and a”
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« estimate P, and P, and multiply (since cond’ns are
Independent) to get

prob (max segment of score > a starts at I)
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Estimating P,

 consider a more general situation:
— assume start with score = z (an integer) instead of O,
— again consider cum score moving to right from position i

— what is prob u, of getting to target score > a before
getting to < 0?

* P1=1U
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a

Cumulative
score
7

0

Success (Reach > a First)

Position in sequence
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a

Cumulative
score

V4

0

Fallure (Reach < O First)

Position in sequence
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Non-rigorous derivation

* Intuition (not a proof!) for why P, should be
approximately e-2:
for any a > b, let

P (a| b) = prob that, starting from cumul score = b,
eventually reach cumul score a
e (ignoring whether drop below 0 first — which is one reason
why this 1sn’t a proof!)
Then
- P(alb)=P (a-b|0)
P@+a’|0) =P@|0)P@+a |a)=P(a|0)P(a|0)
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.. the functiona —» P (a | 0)
takes sums to products
.. P(a|0)=e#2for some u

28



What Is 1/?

Consider first step, starting at O:
prob it has size k Is p,
Considering all possible sizes of 15t step:
P(a|0)=2pc P (alk) = 2,p P (a—k|0)
= eHaA=3 P, eH (a-k)
= (cancelling e#2) 1 = >, p, e~k
= 1 = A (by definition of A)
— P(a|0)=¢*2

29



Information Theory

Gives useful concepts & terminology for describing
how much “better” one probability model is than
another.

Gives Interesting way to think about 2d law of
thermodynamics

Important in coding theory / data compression

Suggests a useful approach (Minimum Description
Length principle) to avoid overfitting data
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12 L.ambda ¢l and cro binding sites

Fig. 1. Sonme aligrred secquences and their secquence logo. At the top of the figure are listed the

12 DMNA secquences from the P and Pg control regions in bactericphage lambda. These are bound by
both the ¢l and cro proteins [16]. Each even numbered secqquence is the complenrent of the preceding
odd numbered secquence. The sequence logo, described in detail in the text, is at the bottom of the
figure. The cosine wave is positioned to indicate that a minor groove faces the center of each
symmetrical protein. Data vwhich support this assignment are given in reference [17].
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Entropy

» The information theoretic entropy
— or Shannon entropy

of a probability space (S,P) is

H,(P) = ZssP(8)109,(1/P(s)) = —ZssP(8)10g,(P(s))

— Terms with P(s)=0areset=0
— We usually take b = 2

 1n which case entropy i1s in “bits”
. H,(P)>0
* because each term P(s)log,(1/P(s)) = 0
H,(P) = 0 only for trivial dist’n concentrated in single point
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Entropy (cont’d)

 Intuitively, the entropy measures how “spread out”
the probability distribution is.

— for P(s) close to O, or to 1, P(s)log,(1/P(s)) is close to O.
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Relative Entropy

* The relative entropy or Kullback-Leibler distance
for two dist’ns P and Q on S 1S

Dy(P || Q) = =, P(s)l0g,(P(s) / Q(s))
(the expected value of the loglikelihood ratio).

— 1f P(s) =0, set corresponding term =0
—1fP(s) =0 but Q(s) =0, D,(P || Q) Is taken to be +oo.
By Information inequality, D, (P || Q) = 0, with
equality only If P = Q.
* In general

Dy(P || Q) # Dyp(Q || P)
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Information Inequality

(Let p, = P(s), for s € S). For any
—prob dist’n {p.}..s, and

—{q.}._ssatisfyingq, > 0and X, g, < 1
* e.9. {q.} a probability distribution

we have

%5 bs In(as) < X5 ps In(p;)
with equality only if q.=p.forall s (‘V s°)
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Proof. In(x) <x—1 for all x>0, with equality only
for x = 1. (See next slide).

. 2 Ps In(ag) - ps In(py) = Z ps In(as/ ps)
<X Ps (9. /ps— 1) (with equality only if g;= p, Vs)
=2 0—2.p;<1-1=0.
So Z, p, In(q,) < X, p. In(p,), with equality only if
0s=Ps V S.
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In(x) <x-1

y = In(x)
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Information Inequality (cont’d)

« Since log, for any base b is related to In by
log, (x) = In(x)/In(b)
the information inequality holds for log, as well:
ZS ps Iogb(qs) < Zs ps Iogb(ps)

 Equivalent formulation: the entropy H,({p.})
satisfies

Hb({ps}) = _zs ps Iogb(ps) < _Zs ps Iogb(qs) — Zs pslogb(]-/CIs)
for any dist’n {q.}.

38



Distributions with Maximum Entropy

» For a sample space with n elements,

— largest possible entropy (of any prob dist’n) is log,(n),
and

— this attained only for prob dist’n g, = 1/n for each s :

 Proof. Take arbitrary prob dist’n {p.}, and {q.} as
above. Then

Hb({ps}) < Zs ps Iogb(llqs) = 2s ps |Ogb(ﬂ) - Iogb(n)
and

Hb({qs}) = 2 0 Iogb(llqs) = 2 g Iogb(n) = Iogb(n)
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Maximum Entropy Subject to

Constraint: Boltzmann Distribution

* |n physics,
— S may correspond to the fixed set of states of a physical system,

— the prob dist’'n P = {p.}..s may vary, subject to a constraint of the
form
% P, E(s) = E
where E and {E(s)} are fixed (e.g. the expected energy of the
system, and the energies of individual states respectively).

— Note that

min,E(s) = Z,_s p; (MInE(S)) < Z, p; E(t) < X, p, max.,E(s) = max.E(s).
So (since the middle term = E)
minE(s) < E < max.E(s)

« We seek {p.} constrained as above for which the entropy
H({p.}) is maximized.

40



Boltzmann Distribution (cont’d)

Consider {g.} = {q.("} of the form g, = c,e"™®)where r is a
constant and ¢, = 1/ (Z.eE®)) is determined by the
requirement that {g.} be a prob dist’n.

We first want to show that there exists an r such that {q,("}
satisfies the above constraint on p, i.e. . q,(" E(s) = E
Write qs(r) — Cre-rE(s) — Cr er (min E(s)) er (E(s)-min E(s)). AS

r — +oo, the last factor e (E(s)}-min E(s))
=1 1f E(S) = min,E(s)
— 0 1f E(S) = min E(s) since then the exponent of e becomes large
and negative.

Consequently {q.("} converges to a dist’n {q,*?} which
satisfies g/ = 0 for any s for which E(s) = min, E(s). Then
¥, 0. E(s) = ming E(s).
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Boltzmann Distribution (cont’d)

By asimilar argument, as r — —oo , {q.("} converges to a
dist’n {g.} which satisfies q,(=) = 0 for any s for which
E(s) = max, E(s); and X g, E(S) = max, E(S).

« Therefore since X, g." E(s) is continuous in r it takes on
all values between min E(s) and max.E(s). In particular
minE(s) < E <max.E(s), so we can find a value of r such
that

% 0" E(s) = E
.e. {g.("} satisfies the constraint.
« Then by the information inequality and the constraint on

{Ps}
H({p}) < Zpdog(L/q) = = ps(r E(S) - log(c,))
=r E-log(c,)
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Boltzmann Distribution (cont’d)

- Butalso H({g,"}) = 2 q,"log (1/g,")
= 2,07 (r E(s) - log(c,)) =rE-log(c)=H{p})

* S0 {q.} of the form g, = c,e"E®) (for an appropriate r
which we have not computed explicitly!) has the maximum
entropy of all prob dist’ns {p.} satisfying the constraint

¥, P E(s) =E
« For this distribution, the probability associated to the state

s declines exponentially in E(S). This is sometimes called
the Boltzmann distribution, after its discoverer in the
context of classical thermodynamics.
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Basic Coding Theory/
Data Compression

e a binary source code for a prob space (S,P) Is a
mapping C: S — {strings of 0’s and 1’s}
— C(s) 1s called the codeword corresponding to s.

« Given C, and any “text” or string S,S, --- S,, Of
elements in S
—s; € Sforeach |

can create an encoded string C(s,)C(s,) -+ C(s,,) (of
0’s and 1’s)
— 1.e. replace each s; by its codeword.
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Uniquely Decodable Codes

« C s uniquely decodable if distinct strings from S
always give distinct encoded strings

—> can uniquely reconstruct the original message from the
encoded message

« Cisa prefix code or instantaneous code if no
codeword Is a prefix of any other codeword.
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Examples: let S have three elements: 1,2,3. Then
—C(1)=001, C(2) =1, C(3) =01 1s a prefix code on S.
-~ C(1)=0,C(2) =1, C(3) =01 1is not a prefix code,
because C(1) is a prefix of C(3).
* Is it uniquely decodable?
—1s C(1) =001, C(2) =1, C(3) =10 a prefix code?
* Is it uniquely decodable?
— ASCII 8-bit code for representing alphabet & symbols is
prefix code

* because all codewords have same length!

« UTF-8 is variable-width (one to four bytes) encoding of
Unicode characters that includes ASCII & is a prefix code
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 Prefix codes are uniquely decodable:

— can decode the prefix-coded text by
» reading through it in order, and

» replacing each codeword by its corresponding s as soon as its
end 1s recognized (whence “instantaneous’).

 For other types of uniquely decodable codes, may
need to read whole text before decoding Is possible.
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Codewords as Paths

Codewords correspond to paths from root in a full binary rooted tree
of sufficient depth.
— Each such path is uniquely determined by its end node.

Code Is a prefix code < no end node Is ancestor or descendant of any
other end node:

The three codewords are 001, 01, and 1
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« Codewords in a prefix code are like the series of
yes-no answers to “20 questions”, that uniquely
determine a particular seS
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Code Lengths

» Foracode C, let I-(s) = length of C(s), for seS.

 Equivalently, I-(s) = depth of the end node v, of the
corresponding path.
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Kraft Inequality

 Let I(s) assign positive integer to each s € S. Then
| = | for some prefix code C

& 3 219<

« Example: let S = {a,b,c}. Then can the following
correspond to prefix codes?

_1@)=1,1(b)=1,1(c)=1 ?
_1@)=1,1(b)=1,1(c)=2 ?
_1@)=1,1(b)=2,1(c)=2 ?
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Proof of Kraft inequality

Consider full binary rooted tree of depth n > max,_ I(s).

Number leaves (= nodes of depth n) consecutively from
left to right starting with 1.

0 1
0 1 Ol
e
0 0 1 0 1
SN VY A WA

0 \1
1 2 5 6 G 0 10 11 12 13 14 15 16
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Proof of Kraft inequality (cont’d)

— For each node v in the tree, if depth(v) = m then
» v has 2™ descendants among the 2" leaves; and

* these are numbered consecutively from ¢ to d, such that d is
divisible by 2mm

— Conversely,

a set of 2™ leaves consecutively numbered from c to d,
& such that d is divisible by 2"

IS the set of depth n descendants for a unigue node v of
depth m.

— If neither v, and v, Is an ancestor of the other, then
descendants of v, and v, are disjoint sets.
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Proof of Kraft inequality (cont’d)

—: Assume | = I for a prefix code C.

» C aprefix code = end nodes v, for the
corresponding paths have disjoint sets of
descendants

« Since v, has 2™6) descendants in n" row,
Y. . 2ME <20,

seS

« Cancelling 2", getX. 216 < 1.

seS
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Proof of Kraft inequality (cont’d)

<=: Conversely suppose X, . 27/6)< 1.
« Then X _c 2™ <20,
 Arrange I(s)’s in increasing order

 Choose successive contiguous subsets V, among
leaves, starting from far left, such that |V, |= 2"16),

 Each such subset = {depth n descendants} for a unique
node v, In the tree, with
depth(v,) = I(s).

 The mapping s — v, then defines a prefix code C with
| = 1.
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Entropy & Expected Code Length

» The expected length L(C) of a code C Is given by

I—(C) = Zs ps IC(S)
.e. the expected value of the random variable |-

» L(C)="“expected # yes-no questions necessary to
specify seS using C”

= avg # bits needed to encode a “character”
seS, for text where each s used with freq p,
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Entropy & Expected Code Length
(cont’d)

 For any prefix code, L(C) > H,(P):
Proof. Define g, = 2716
—from Kraft inequality, ~,_q.< 1, so
—apply information inequality:

H,({ps}) < Z plog,(1/ay) = = pg I(s) = L(C)

S



« Conversely, can find prefix code C such that
L(C) < H,(P) + 1.

Proof. Let I(s) = smallest integer > log,(1/ p,).
~Then 218 <p 50X, 21O <T p.=1.

— By Kraft inequality 3 prefix code C with | = |-
Then

L(C) o HZ(P) = Zs, Ps (I(S) ) |092(1/ ps)) < Zs Ps (1) =1
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—N.B.

 C chosen as above (the Shannon code) neec
optimal, in sense of having lowest possible

not be

(C).

« A construction of an optimal code Is due to

Huffman.
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Interpretation of Entropy

« .. H,(P) is (approximately!) the expected code
length for an optimal prefix encoding of the
probability space (S, P)
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Uniquely Decodable Codes (cont’d)

All uniquely decodable codes C satisfy Kraft inequality

— for proof, see e.g. Cover & Thomas, Elements of Information
Theory, sec. 5.5.

Therefore 3 prefix code D with the same codeword lengths
as C:

lc(s) = 15(s) forall s € S.

. expected codeword length L(C) is same as for optimal
prefix code

In particular
L(C) = Zs Ps IC(S) 2 HZ(P)-
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* .. H,(P) = minimum avg # bits (0’s and
1’s), needed per character seS to encode
texts
— for the best possible uniquely decodable code.

— the relation becomes exact if more general
codes (arbitrary invertible maps from texts to
bit strings) are allowed
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Entropy and Information

« By above, H,(P) = # bits needed “on average” to
unambiguously specify elements of S.

* .. Entropy = average “uncertainty” before an
element of (S,P) Is specified.

» Information corresponds to reduction in
uncertainty.
— Before elt of S Is specified, the uncertainty is H(P);
— after it is specified, uncertainty is O.
— So the amount of information gained i1s H(P) — 0 =
H(P).
— So entropy happens to equal information in this

Instance;
* not in general though!
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« S0 H,(P) = avg amount of information per
character in a text based on (S, P).
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Minimum Description Length Principle
(MDL)

Method for choosing among probability models

— suggested by coding theory & parsimony principle
(Occam’s razor)

— Intent Is to avoid overfitting
Idea: minimize total # bits needed to describe data,

Including bits necessary to represent the model
(parameter values)

e ‘best’ model for data i1s one with minimum # bits
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MDL

— Avg # bits needed to represent data, given model:
Byaia = Ha(P) = Z,sP(5)l0g,(1/P(s)) (i.e. entropy)
* to represent a specific dataset s, given the prob model P:
log,(1/ P(s)) = — log,(P(s)) bits

— (Shannon encoding — which is close to optimal)

— # bits needed to specify model:

Boaram = (# parameters) x precision

« some non-trivial issues here: can be many possible ways of
‘specifying’ parameters!

— Minimize By, + B, Over prob models & precisions
<> maximizing the (adjusted) relative entropy.
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Avolding overfitting — other approaches

» Most methods to avoid overfitting involve similar
tradeoff:

— In choosing among models, balance
 goodness of fit to training data

against
» penalty for complexity of the model

 Other such methods (besides MDL) include:

— AIC (Akaike information criterion)
— BIC (Bayesian information criterion)
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A different, commonly used approach:
— train multiple models on the ‘training’ data
— then choose one that does best on separate (‘test’) data

 This I1s wrong: test data Is being used for training !!
— ‘training’ 1s any procedure for choosing among models,

not only ‘estimating parameters’ (a particular type of
choice)

So still 3 major risk of overfitting

 Can hold out part of test set for final, indep test
— but performance in final test likely not as good
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Relative Entropy

* The relative entropy or Kullback-Leibler distance
for two dist’ns P and Q on S 1S

Dy(P || Q) = =, P(s)l0g,(P(s) / Q(s))
(the expected value of the loglikelihood ratio).

— 1f P(s) =0, set corresponding term =0
—1fP(s) =0 but Q(s) =0, D,(P || Q) Is taken to be +oo.
By Information inequality, D, (P || Q) = 0, with
equality only If P = Q.
* In general

Dy(P || Q) # Dyp(Q || P)
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* For site dist’n P and background dist’n Q,
— D(P || Q) = the mean of site score distribution

I.e. the sum, over sequences, of prob of seq times its LLR
weight.

Since P(s) = | [ Pi(s) and Q(s) = | [Qi(si),

DPIQ) =2 (] ] Pi(s)) D (log(Pi(si)) - log(Qi(si)))

seS  I<i<n I<j<n

which simplifies to

2 (2_Pi(r)(log(Pi(r)) - log(Qi(r)))) = > D(Pi||Q)

1<i<n reA 1<i<n



3’ Splice Sites — C. elegans
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Weight Matrix — 3’ Splice Sites

SITE FREQUENCIES:

A 0.400 0.429
cC 0.118 0.079
G 0.072 0.070
T 0.409 0.422

0.282
0.081
0.063
0.574

0.058
0.029
0.018
0.896

BACKGROUND FREQUENCIES:

A 0.321 0.321
c 0.179 0.179
G 0.179 0.179
T 0.321 0.321
WEIGHTS:

A 0.32 0.42
C -0.e0 -1.18
G -1.31 -1.35
T 0.35 0.39

0.321
0.179
0.179
0.321

-0.18
-1.15
-1.51

0.84

0.321
0.179
0.179
0.321

-2.46
-2.64
-3.35

1.48

(C. elegans)

.008
.016
.005
.971

o O O o

.321
.179
.179
.321

o O O o

-5.29
-3.51
-5.23

1.60

.092
.135
.073
.700

o O O o

.321
.179
.179
.321

o O O o

-1.79
-0.41
-1.30

1.12

.029
.834
.001
.135

o O O o

.321
.179
.179
.321

O O O o

-3.45
2.22
-6.93

.000
.000
.000
.000

oOooRr

.321
.179
.179
.321

o O O o

1.64

-99.00
-99.00

.000
.000
.000
.000

o R OO

.321
.179
.179
.321

o O O o

-99.00
-99.00
2.48

-1.24 -99.00 -99.00

.410
.156
.310
.124

o O O o

.321
.179
.179
.321

o O O o

0.36
-0.20
0.79
-1.37

.293
.187
.159
.361

o O O o

.321
.179
.179
.321

o O O o

-0.13
0.06
-0.17
0.17

.307
.225
.191
.2776

o O O o

.321
.179
.179
.321

o O O o

-0.06
0.33
0.10

-0.22

72



3’ Splice Sites

WEIGHTS:
A 0.32 0.42 -0.18 -2.46 -5.29 -1.79 -3.45 1.64 -99.00
c -0.60 -1.18 -1.15 -2.64 -3.51 -0.41 2.22 -99.00 -99.00
G -1.31 -1.35 -1.51 -3.35 -5.23 -1.30 -6.93 -99.00 2.48
T 0.35 0.39 0.84 1.48 1.60 1.12 -1.24 -99.00 -99.00
Position-specific Relative Entropy:

0.11 0.16 0.24 1.05 1.43 0.47 1.57 1.64 2.48
e.g. 0.11 = .400 (.32) + .118 (-.60) + .072 (-1.31) + .409 (.35)
Total Relative Entropy (Sum of position-specific values) = 9.35

.36
.20
.79
.37

.19

.13
.06
.17
.17

.01

73
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* Note pos-specific relative entropy always > 0
= 0 only If site freqs exactly equal backgd freqgs.

 will rarely happen, even far from site (when we’re 1n

backgd).
 So rel entropy increases indefinitely as window
Size Increases
— even when no biological information being added.

 For large enough window get spuriously clean
score separation between training seqgs and other

segs
— overfitting.
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Position-Specific Relative Entropy:
3’ Splice Sites
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Predicted vs. Observed Distributions

(3’ site model): FZKLL@Q\’_SJIL
Relative entropy: 10.85 bits
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« Similarly,

Dy(Q || P) = Zs5Q(8)10g,(Q(s) / P(8))
= - ZssQ(8)log,,(P(s) / Q(s))

= negative of the mean of the dist’n of the LLR
scores 1n background sequence (the “null
distribution”);

— but must eliminate s for which P(s) = 0.

I



Predicted vs. Observed Distributions
(3’ site model):
(Simulated) Random Independent
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Sequence Logos
Schneider and Stephens (NAR 18, 6097-6100, 1990)- see

At i!" position, each residue r gets height
Pi(rD(P; || Q)
Schneider

— takes Q; to be the equal-frequency model
— subtracts small-sample correction from D(P; || Q;)

Gorodkin, Heyer, Brunak and Stormo (CABIO 13, 583-
586, 1997)

— use unequal frequency Q;

— allow for gaps

— take height either proportional to P;(r) (as above) or to
P.(r)/ Qi(r), letter upside down if P;(r) < Q;(r).
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From

1
2
=3
a8
5
&
7
8
9
10
11
122
o
=1
-

- - 4+ 4+++++++
9876543210123456789

TAT il By TAT
T T ol By ol By
il By il By
TrATT T T T eI
T™TAT ol By il Bl By
il By T il By ol By
T.AT ol By
T™rAT ol Rl By T il By
ol By ol By T e
ol By TG
il Bl By T T il By
TrAT il By

12 L.ambda ¢l and cro binding sites

Fig. 1. Sonme aligrred secquences and their secquence logo. At the top of the figure are listed the

12 DMNA secquences from the P and Pg control regions in bactericphage lambda. These are bound by
both the ¢l and cro proteins [16]. Each even numbered secqquence is the complenrent of the preceding
odd numbered secquence. The sequence logo, described in detail in the text, is at the bottom of the
figure. The cosine wave is positioned to indicate that a minor groove faces the center of each
symmetrical protein. Data vwhich support this assignment are given in reference [17].
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from http://gibk26.bse.kyutech.ac.jp

from http://www.dna-dna.net/
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1Z Lambda ¢l and cro bindin g sites

S Lambda O protein binding sites
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From

Pattern at T7 RNA polymerase binding sites

Pattern required by T7 RNA polymerase to functdon
iy
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From

E. coli Ribosome binding sites

relds
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1035 E. coli Ribosome binding sites listed in the Miller book
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From

Thi= fiqure shows teo sequence logos ¥ which repre sent sequence comserwation at

the S idornor ) and S faccepibriencks of humani s, The regon betewesen the

bBlack wvertical bars is remowed curing m RS splicing. The logos gragpphical by
demonstaie ttaetmost of e patbe ) for locating te inron encks re sicdes on e

irmron. This allows more cocdom CI“I:IICES in te proteircoding exors. The logos alsa
show & common pattern YCA5 | GT 5 which suggests fhat e meckhanisms fhatrecoomize
e two ends of e intron had & common ancestor . See R k. Steplerns arnd T. D
Schireicer, 'Features of spliceosomes exolution arnd function irnferred fom an anal vsis

af the infofmadon at ko mae sHlice sites™, J. Mo . Bid , 225, 1 124—1 13, (1992

O — exXon

—rTT-l—-I-T'I_I‘TTT T
acceptor

32— exon
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Position-Specific Relative Entropy:
C. elegans 5’ Splice Sites
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2 bits

1 bit
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Position-Specific Relative Entropy:
3’ Splice Sites
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Aligned Globin Sequences
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From

3!
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T T Tr

Logo of Gibbs Block D (Tc¢l) 9 sequences
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