Today's Lecture

• Algorithm generalities / complexity

• Directed graphs, WDAGs

Genomes are big but computers are fast!

- Typical laptop clock speed: ~ 1 Ghz – Potentially billions of CPU instructions / sec
- Important practical consideration in dealing with genome-scale data sets: compared to CPU operations,
	- *non-cache memory accesses* are very slow (100s of cycles)
	- *disk accesses* are even slower (1000s of cycles)
	- for both, random (non-sequential) accesses are much slower than sequential accesses

Algorithms – Some General Remarks

- The most widely used algorithms are the oldest
	- e.g. sorting lists, traversing trees, dynamic programming.
	- The challenge in CMB is usually *not* finding *new* algorithms, but rather
		- finding *biologically appropriate applications* of old ones.
- Often prefer
	- suboptimal but easy-to-program algorithm over more optimal one
	- or space-efficient algorithm over time-efficient one.
- *Probabilities* are important in
	- interpreting results
	- guiding search

 The most powerful analyses generally involve probabilistic models, rather than deterministic ones.

Algorithmic Complexity

- Basic questions about an algorithm:
	- how long does it take to run?
	- how much space (RAM or disk space) does it require?
- Would like precise function *f*(*N*), e.g.

 $f(N) = .05 N^3 + 50.7 N^2 + 6.03 N$

for

- running time in secs, or
- space in kbytes,
- as function of the size *N* of input data set.
- But
	- tedious to derive &
	- depends on (often uninteresting though important!) hardware $\&$ software implementation details.

• Instead, more customary to give "the" *asymptotic complexity,* i.e. expression *g*(*N*) such that

 $C_1g(N) < f(N) < C_2g(N)$

for some constants C_1 and C_2 , and *N* large enough.

- This is written $O(g(N))$, where notation $O($) means "up to an unspecified multiplicative constant".
	- $-$ e.g. for the $f(N)$ above, the dominating term for large N is .05 *N*³ , so
		- can take $g(N) = N^3$
		- asymptotic complexity = $O(N^3)$.

- Can be misleading, since
	- for small *N* a different term may dominate
		- (e.g. 2^d term in above example much more important for $N <$ 1000)
	- size of constant may be quite important
		- (big difference between .05 and 5,000,000!)
		- e.g. BLAST and Smith-Waterman both *O*(*N*²), but size of constant enormously different
	- but very useful as rough guide to performance.

• Cache misses (non-cache memory accesses) and disk accesses often dominate running time, yet are 'invisible' to complexity analysis (because affect constant factor only)

- Another limitation to complexity analysis:
	- time or space requirement may depend on specific characteristics of input data.
- Usually give "worst case" complexity – applies to the worst data set of a given size,

 but

- in biological situations the *average biologically occurring case* is
	- more relevant
	- often much easier than worst case (which may never arise in practice), or even "average case" in some idealized sense.

- Proof that a problem is *NP-hard*
	- (has complexity very likely greater than any polynomial function of *N* and therefore effectively unsolvable for large *N*)
	- can be useful in guiding search for more efficient algorithms
	- *but* can also be misleading, since
		- we need *some* solution anyway, for data sets occurring in practice
		- average *biologically relevant* case may be quite manageable

Directed Graphs

- A *directed graph* is a pair (*V*, *E*) where
	- *V* is a finite set of *vertices*, or *nodes*.
	- *E* is a set of ordered pairs (called *edges*) of vertices in *V*.
- An edge (v_i, v_j) is said to *leave* v_i and to *enter* v_j . $-(v_i \text{ and } v_j \text{ are vertices})$
- *in-degree* of a vertex = # edges entering it;
- *out-degree* = # edges leaving it.

Example:

- $V = \{1, 2, 3, 4, 5, 6\},\$
- $E = \{(1,2), (1,3), (2,4), (4,1), (5,3), (3,1)\}\$
- Vertex 3 has in-degree 2 and out-degree 1.

Paths and Cycles

- A *path* of *length k* in *G from u* to *u'* (vertices) is
	- $-$ a sequence *P* of vertices (v_0, v_1, \ldots, v_k) such that
		- $v_0 = u$,
		- $v_k = u'$, and
		- (v_{i-1}, v_i) is an edge for $i = 1, 2, ..., k$.
- A path can have length 0.
- We write $|P| = k$.
- A *cycle* is a path of length ≥ 1 from a vertex to itself.
- In example at right,
	- (*1,2,4*) is a path,
	- (*1,3,5*) is not, and
	- (*1,2,4,1*) and (*1,3,1*) are cycles.

Paths and Cycles (cont'd)

- Can join
	- $-$ any path $(u, ..., v)$ from u to v , to
	- $-$ any path $(v, ..., w)$ from v to w
	- to get a path $(u, ..., v, ..., w)$ from *u* to *w*.

DAGs

- A *directed acyclic graph* (DAG) is a directed graph with no cycles.
- In a DAG, for distinct nodes v_i and v_j , we say
	- $-v_i$ is a *parent* of v_j , and v_j is a *child* of v_i , if
		- there is an edge (v_i, v_j)
	- $-v_i$ is an *ancestor* of v_j , and v_j is a *descendant* of v_i , if
		- there is a path from v_i to v_j
- In a DAG the length of a path cannot exceed |*V*| *-* 1, – (where $|V|$ = total # vertices in graph)

because

- $-$ in a path of length $\geq |V|$,
	- at least one vertex *v* would have to appear twice in the path;
- but then there would be a path from *v* to *v*, i.e. a cycle.

Structure of DAGs

- Define the *depth* of a node *v* in *V* as: – the length of the longest path ending at *v*; by above, the depth is well-defined and $\leq |V|$ - 1.
- *Every descendant w of a node v has higher depth than v*: If
	- $(u, ..., v)$ is path of length $n = \text{depth}(v)$ ending at v , and

$$
-(v, ..., w)
$$
 is path from v to w,

then $(u, ..., v, ..., w)$ is a path of length $> n$ ending at *w*, so depth $(w) > n$.

Structure of DAGs (cont'd)

- *Every node v of positive depth has a parent of depth exactly one less*:
	- $-$ Let $(u, ..., v', v)$ be path of length $n =$ depth (v) ending at v .
	- Then *v'* is a parent of *v*.
	- $-$ Since $(u, ..., v')$ has length $n-1$, depth $(v') \geq n-1$.
	- Since also depth(*v'*) < *n* (because *v* is a descendant of *v'*), depth(ν) is exactly $n-1$.
- *The nodes on any path are of increasing depth*.

Structure of DAGs (cont'd)

.

.

.

Important special cases:

- A *(rooted)* tree is a DAG which
	- has unique depth 0 node (the *root*), *and*
	- every other node has in-degree 1
		- (i.e. has a unique parent, of depth one less than that of the node).
- A *binary tree* is a tree in which
	- every node has out-degree at most 2.
- A *linked list* is a tree in which
	- every node has out-degree at most 1
	- or equivalently, a DAG in which \exists at most one node of each depth

binary tree

linked list

Remarks on Depth Structure

- For *dynamic programming* algorithm
	- $-$ we need an order v_1 , v_2 , ..., v_n for the vertices
		- (not a path!)

in which parents appear before children.

– From the above, *depth order*

• (in which depth 0 nodes are listed first, then depth 1 nodes, etc.) is such an order.

- In general there are many other such orders.
- We haven't given constructive procedure for finding the depths of all vertices.
	- For an arbitrary DAG, can be done in $O(|V| + |E|)$ time;
	- we omit algorithm, since for DAGs related to sequence analysis, the depth structure is obvious.