
Today’s Lecture 

• Algorithm generalities / complexity 

 

• Directed graphs, WDAGs 
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Genomes are big  

but computers are fast! 

• Typical laptop clock speed: ~ 1 Ghz 

– Potentially billions of CPU instructions / sec 

• Important practical consideration in dealing 
with genome-scale data sets: compared to 
CPU operations, 

– non-cache memory accesses are very slow 
(100s of cycles) 

– disk accesses are even slower (1000s of cycles) 

– for both, random (non-sequential) accesses are 
much slower than sequential accesses 
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Algorithms – Some General Remarks 

• The most widely used algorithms are the oldest 

– e.g. sorting lists, traversing trees, dynamic programming.  

   The challenge in CMB is usually not finding new algorithms,  

    but rather  

– finding biologically appropriate applications of old ones. 

• Often prefer  

– suboptimal but easy-to-program algorithm over more optimal one  

– or space-efficient algorithm over time-efficient one. 

• Probabilities are important in  

– interpreting results 

– guiding search 

    The most powerful analyses generally involve probabilistic models, 
rather than deterministic ones. 



4 

Algorithmic Complexity 

• Basic questions about an algorithm: 

– how long does it take to run? 

– how much space (RAM or disk space) does it require? 

• Would like precise function f(N), e.g.   

        f(N) = .05 N3 + 50.7 N2 + 6.03 N  

   for  

– running time in secs, or  

– space in kbytes,  

    as function of the size N of input data set.   

• But  

– tedious to derive &  

– depends on (often uninteresting – though important!) hardware & 
software implementation details. 
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Algorithmic Complexity (cont’d) 

• Instead, more customary to give “the” asymptotic 

complexity, i.e. expression g(N) such that  

                     C1g(N)  < f(N) < C2g(N)  

    for some constants C1 and C2 , and N large enough.   

• This is written O(g(N)), where notation O() means 

“up to an unspecified multiplicative constant”.  

– e.g. for the f(N) above, the dominating term for large N is 

.05 N3, so  

• can take g(N) = N3  

• asymptotic complexity = O(N3).  
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Algorithmic Complexity (cont’d) 

• Can be misleading, since  

– for small N  a different term may dominate  

• (e.g. 2d  term in above example much more important for N < 

1000) 

– size of constant may be quite important  

• (big difference between .05 and 5,000,000!)  

• e.g. BLAST and Smith-Waterman both O(N2), but size of 

constant enormously different 

•   but very useful as rough guide to performance. 
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• Cache misses (non-cache memory accesses) and 
disk accesses often dominate running time, yet 
are ‘invisible’ to complexity analysis (because 
affect constant factor only) 

Algorithmic Complexity (cont’d) 
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Algorithmic Complexity (cont’d)  

• Another limitation to complexity analysis: 

– time or space requirement may depend on specific 
characteristics of input data.  

• Usually give “worst case” complexity  

– applies to the worst data set of a given size,  

   but  

–  in biological situations the average biologically 
occurring case is  

• more relevant 

• often much easier than worst case (which may never arise in 
practice), or even “average case” in some idealized sense. 
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Algorithmic Complexity (cont’d) 

• Proof that a problem is NP-hard  

– (has complexity very likely greater than any polynomial 
function of N and therefore effectively unsolvable for 
large N)  

    can be useful in guiding search for more efficient 
algorithms  

   but can also be misleading, since  

– we need some solution anyway, for data sets occurring in 
practice 

– average biologically relevant case may be quite 
manageable 
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Directed Graphs 

• A directed graph is a pair (V, E) where  

– V is a finite set of vertices, or nodes.  

– E is a set of ordered pairs (called edges) of vertices in 

V.  

• An edge (vi, vj ) is said to leave vi and to enter vj.  

– (vi and vj are vertices)  

• in-degree of a vertex = # edges entering it;  

• out-degree = # edges leaving it. 
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Example:  

• V = {1,2,3,4,5,6},  

• E = {(1,2), (1,3), (2,4), (4,1), (5,3), (3,1)} 

• Vertex 3 has in-degree 2 and out-degree 1. 
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Paths and Cycles 
• A path of length k in G from u to u’ (vertices) is  

– a sequence P of vertices (v0, v1, . . . , vk) such that  

• v0 = u,  

• vk = u’, and  

• (vi-1, vi ) is an edge for i = 1,2, . . ., k.  

• A path can have length 0.  

• We write |P| = k.  

• A cycle is a path of length  1 from a vertex to itself. 

• In example at right,  

– (1,2,4) is a path,  

– (1,3,5) is not, and  

– (1,2,4,1) and (1,3,1) are cycles. 
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Paths and Cycles (cont’d) 

• Can join 

– any path (u, ... , v) from u to v, to  

– any path (v, ... , w) from v to w  

  to get a path (u, ... , v, ... , w) from u to w. 
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DAGs  

• A directed acyclic graph (DAG) is a directed graph with 
no cycles. 

• In a DAG, for distinct nodes vi  and vj, we say 
– vi is a parent of vj, and vj is a child of vi, if  

• there is an edge (vi, vj ) 

– vi is an ancestor of vj, and vj is a descendant of vi, if  
• there is a path from vi  to vj 

• In a DAG the length of a path cannot exceed |V| - 1,  
– (where |V| = total # vertices in graph) 

    because  
– in a path of length  |V|, 

•  at least one vertex v would have to appear twice in the path;  

– but then there would be a path from v to v, i.e. a cycle. 
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Structure of DAGs  

• Define the depth of a node v in V  as:  

– the length of the longest path ending at v;  

    by above, the depth is well-defined and  |V| - 1. 

• Every descendant w of a node v has higher depth 

than v:  If  

– (u, ... ,v) is path of length n = depth(v) ending at v, 

and  

– (v, ..., w) is path from v to w,  

   then (u, ..., v, ..., w) is a path of length > n ending 

at w, so depth(w) > n. 
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Structure of DAGs (cont’d) 

• Every node v of positive depth has a parent of depth 

exactly one less:  

– Let (u, ... , v’, v) be path of length n = depth(v) ending at v.  

– Then v’  is a parent of v.  

– Since (u, ... , v’) has length n – 1, depth(v’)  n – 1. 

– Since also depth(v’) < n (because v is a descendant of v’), 

depth(v’) is exactly n – 1. 

• The nodes on any path are of increasing depth. 
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Structure of DAGs (cont’d) 
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Important special cases: 

• A (rooted) tree is a DAG which  

– has unique depth 0 node (the root), and  

– every other node has in-degree 1  

• (i.e. has a unique parent, of depth one less than that of the node).  

• A binary tree is a tree in which  

– every node has out-degree at most 2. 

• A linked list is a tree in which  

– every node has out-degree at most 1  

– or equivalently, a DAG in which  at most one node of each 

depth 



19 

v0 

v4 v3 

v2 v1 

v5 

v7 
v6 v8 

binary tree 

v0 

linked list 

v1 

v2 

v3 

v4 



20 

Remarks on Depth Structure 

• For dynamic programming algorithm   

– we need an order v1, v2, ..., vn for the vertices  

• (not a path!)  

    in which parents appear before children.  

– From the above, depth order  

• (in which depth 0 nodes are listed first, then depth 1 nodes, etc.)  

   is such an order.  

– In general there are many other such orders. 

• We haven’t given constructive procedure for finding 
the depths of all vertices.  

– For an arbitrary DAG, can be done in O(|V| + |E|) time;  

– we omit algorithm, since for DAGs related to sequence 
analysis, the depth structure is obvious. 


