
Today’s Lecture

• Dynamic programming to find highest weight

paths in WDAGs

1

2

Weighted Directed Graphs
• A weighted directed graph is

– a directed graph (V, E) together with

– a function w from E to the real numbers,

• i.e. with a numerical weight w(e) (which may be positive, negative, or 0)
associated to each edge e.

 A weighted DAG is called a WDAG.

• The (sum) weight of a path is defined to be the sum of the weights
on the edges of the path.

• Similarly, the product weight of a path is the product of the edge
weights

– usually only consider this when all weights are non-negative.

• weight of a path P is written w(P)

• For a path of length 0 (i.e. consisting of a single vertex):

– the sum weight is 0

– the product weight is 1

3

Highest Weight Paths on

WDAGs

• Problem: find a path with the highest possible

weight.

• Solution:

– “Brute force” approach

• i.e. simply enumerating all possible paths and comparing their

weights

 is usually impractical (too many paths!)

– Instead, use the method of dynamic programming (‘The

Fundamental Algorithm of Computational Biology’).

4

Highest Weight Paths on

WDAGs (cont’d)

• Let Pn = (v0, v1, . . . , vn) be a path of highest weight.

• Then for each k < n, the sub-path Pk = (v0, v1, . . . , vk)
must have highest weight of all paths ending at vk,
because

– if Q = (u0, u1, . . . , vk) were another path ending at vk and
having higher weight than Pk,

– then the path (Q , vk+1 , ..., vn) would have weight

 w((Q, vk+1 , ..., vn)) = w(Q) + w((vk , ..., vn))

 > w(Pk) + w((vk , ..., vn)) = w(Pn),

 contradicting assumption that Pn has highest weight.

5

Subpaths of a highest-weight path

can’t be improved:

v0

v1

v2

v3

v4

v5

u1

u0

6

Highest Weight Paths on WDAGs (cont’d)
• So generalize the problem as follows:

• find, for each vertex v, the highest weight of all paths
ending at v – call this w(v)

• Can find w(v) in single pass through V, as follows:
– process the v in depth order (or any order in which parents

precede children)

– if v has no parents, w(v) = 0 (the only path ending at v is (v)).

– for any other v, except for the path (v) (which has weight 0), any
path ending at v is of form (v0, v1, . . ., vk , u , v). Then

– u is a parent of v, so w(u) has already been computed, and
 w((v0, v1, . . . , vk , u , v)) w(u) + w((u,v))

 with equality for an appropriate choice of vi.

– Therefore we may compute w(v) as

))))(()((maxmax(0,)(
) (

u,vwuwvw
vparentsu

7

Example

Depth 0

Depth 1

Depth 2

Depth 3

v0

v2 v3

v7

v1

v5

v8

v4

v6

v9

v13
2 1 -1

3

-3

1

5

2
-2

-3 0

Depth 4 v10 v11 v12

2
-6 3 2

8

w(v) – depth 0 nodes

Depth 0

Depth 1

Depth 2

Depth 3

v0

v2 v3

v7

v1

v5

v8

v4

v6

v9

v13
2 1 -1

3

-3

1

5

2
-2

-3 0

Depth 4 v10 v11 v12

2

0 0 0

-6 3 2

9

w(v) – depth 1 nodes

Depth 0

Depth 1

Depth 2

Depth 3

v0

v2 v3

v7

v1

v5

v8

v4

v6

v9

v13
2 1 -1

3

-3

1

5

2
-2

-3 0

Depth 4 v10 v11 v12

2

0 0 0

2 1 0

-6 3 2

10

w(v) – depth 2 nodes

Depth 0

Depth 1

Depth 2

Depth 3

v0

v2 v3

v7

v1

v5

v8

v4

v6

v9

v13
2 1 -1

3

-3

1

5

2
-2

-3 0

Depth 4 v10 v11 v12

2

0 0 0

2 1 0

3
5

-6 3 2

11

w(v) – depth 3 nodes

Depth 0

Depth 1

Depth 2

Depth 3

v0

v2 v3

v7

v1

v5

v8

v4

v6

v9

v13
2 1 -1

3

-3

1

5

2
-2

-3 0

Depth 4 v10 v11 v12

2

0 0 0

2 1 0

3
5

4
3 2

-6 3 2

12

w(v) – depth 4 nodes

Depth 0

Depth 1

Depth 2

Depth 3

v0

v2 v3

v7

v1

v5

v8

v4

v6

v9

v13
2 1 -1

3

-3

1

5

2
-2

-3 0

Depth 4 v10 v11 v12

2 2 3 -6

0 0 0

2 1 0

3
5

4
3 2

0 6 5

13

 Highest Weight Paths on WDAGs (cont’d)

• To reconstruct best path, need “traceback” pointer to
immediate predecessor of v in best path:

– in preceding graph, T(v) is the parent on red edge coming
into v

• if more than one such edge, pick one at random;

• if no such edge, T(v) = v

• Sometimes useful to record beginning of best path:

0)())(()((max arg

0)(
)(

)parents(

vwu,v w uw

vwv
vT

vu

0)())((

0)(
)(

vwvTB

vwv
vB

14

• Then highest weight of any path in graph is

 maxv V (w(v))

– updated as each node is visited

• indicated by in preceding graph –

 and so doesn’t require additional pass through vertices

• if u = argmaxv V (w(v)), can reconstruct highest weight
path by tracing back from u, using T:

– path ends at u;

– immediate predecessor of u is T(u);

– predecessor of T(u) is T(T(u)); etc.

– stop when T(v) = v.

• In preceding example, highest weight is 6 and u = v11

 Highest Weight Paths on WDAGs (cont’d)

15

Dynamic programming on WDAGs

Depth 0

Depth 1

Depth 2

Depth 3

v0

v2 v3

v7

v1

v5

v8

v4

v6

v9

v13
2 1 -1

3

-3

1

5

2
-2

-3 0

Depth 4 v10 v11 v12

2 2 3 -6

0 0 0

2 1 0

3
5

4
3 2

0 6 5

16

Complexity of Dynamic Programming

• Time to find a best path is O(|E|+|V|):

– in initial pass, visit each node, and each edge into that

node: O(|E|+|V|)

– in traceback, visit subset of nodes, and unique edge

from each node: O(|V|)

 (Complexity to find all highest weight paths can be

higher)

 For very large graphs, even O(|E|+|V|) may be

unacceptable!

17

Complexity Analysis (cont’d)

• Space requirements:

– If only want weight of best path, and beginning and end,

then

– don’t need T(v), and

– only need retain w(v) and B(v) until have processed all children

of v (or when best path found so far ends at v).

 Space depends on graph structure, but usually << O(|V|).

– If want path itself, must store T(v) v

– space = O(|V|)

– algorithms (for some graphs) to reduce this, but may take

more time.

18

Implementing Dynamic Programming

in a Computer Program

• Storing entire graph has space complexity =

O(|V|+|E|)

• If graph has regular structure, can often “create” and

process vertices and edges on the fly, without

storing in memory

– cf. edit graph (to be defined later) for aligning sequences

19

Same dynamic programming approach

can be used to find:

1. Highest product weight path (if weights are 0)

2. Highest weight path that

– starts in particular subset V’ of vertices,

• don’t consider paths that start outside V’ :

 i.e. when computing w(v), don’t consider trivial path unless v V’

– and/or ends in particular subset V’’

• only scan for the maximum w(v) over V’’

3. Sum of product weights of all paths ending at
particular vertex

– sum over all edges coming into v, instead of maximizing

– this useful for probability calculations

• Will use the above variants later!

