
Today’s Lecture 

• Dynamic programming to find highest weight 

paths in WDAGs 
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Weighted Directed Graphs 
• A weighted directed graph is  

– a directed graph (V, E) together with  

– a function w from E to the real numbers,  

• i.e. with a numerical weight w(e) (which may be positive, negative, or 0) 
associated to each edge e.  

  A weighted DAG is called a WDAG. 

• The (sum) weight of a path is defined to be the sum of the weights 
on the edges of the path.  

• Similarly, the product weight of a path is the product of the edge 
weights  

– usually only consider this when all weights are non-negative.  

• weight of a path P is written w(P) 

• For a path of length 0 (i.e. consisting of a single vertex): 

– the sum weight is 0 

– the product weight is 1 
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Highest Weight Paths on 

WDAGs 

• Problem: find a path with the highest possible 

weight.  

• Solution:  

– “Brute force” approach  

• i.e. simply enumerating all possible paths and comparing their 

weights  

   is usually impractical (too many paths!)  

– Instead, use the method of dynamic programming (‘The 

Fundamental Algorithm of Computational Biology’).  
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Highest Weight Paths on 

WDAGs (cont’d) 

• Let Pn  = (v0, v1, . . . , vn) be a path of highest weight.  

• Then for each k < n, the sub-path Pk  = (v0, v1, . . . , vk) 
must have highest weight of all paths ending at vk, 
because  

– if Q  =  (u0, u1, . . . , vk) were another path ending at vk  and 
having higher weight than Pk,  

– then the path (Q , vk+1 , ..., vn) would have weight  

    w((Q, vk+1 , ..., vn)) = w(Q) + w((vk , ..., vn))   

     > w(Pk ) + w((vk , ..., vn))  =  w(Pn),  

   contradicting assumption that Pn has highest weight. 
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Subpaths of a highest-weight path  

can’t be improved:  

v0 

v1 

v2 

v3 

v4 

v5 

u1 

u0 
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Highest Weight Paths on WDAGs (cont’d) 
• So generalize the problem as follows:  

• find, for each vertex v, the highest weight of all paths 
ending at v – call this w(v)  

• Can find w(v) in single pass through V, as follows: 
– process the v in depth order (or any order in which parents 

precede children) 

– if v has no parents, w(v) = 0 (the only path ending at v is (v)). 

– for any other v, except for the path (v) (which has weight 0), any 
path ending at v is of form (v0, v1, . . ., vk , u , v). Then  

–  u is a parent of v, so w(u) has already been computed, and  
                 w((v0, v1, . . . , vk , u , v))  w(u) + w((u,v))  

    with equality for an appropriate choice of vi.  

– Therefore we may compute w(v) as 
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Example  

Depth 0 

Depth 1 

Depth 2 

Depth 3 

v0 

v2 v3 

v7 

v1 

v5 

v8 

v4 

v6 

v9 

v13 
2 1 -1 

3 

-3 

1 

5 

2 
-2 

-3 0 

Depth 4 v10 v11 v12 

2 
-6 3 2 
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w(v) – depth 0 nodes  

Depth 0 

Depth 1 

Depth 2 

Depth 3 

v0 

v2 v3 

v7 

v1 

v5 

v8 

v4 

v6 

v9 

v13 
2 1 -1 

3 

-3 

1 

5 

2 
-2 

-3 0 

Depth 4 v10 v11 v12 

2 

0 0 0 

-6 3 2 
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w(v) – depth 1 nodes  

Depth 0 

Depth 1 

Depth 2 

Depth 3 

v0 

v2 v3 

v7 

v1 

v5 

v8 

v4 

v6 

v9 

v13 
2 1 -1 

3 

-3 

1 

5 

2 
-2 

-3 0 

Depth 4 v10 v11 v12 

2 

0 0 0 

2 1 0 

-6 3 2 
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w(v) – depth 2 nodes  

Depth 0 

Depth 1 

Depth 2 

Depth 3 

v0 

v2 v3 

v7 

v1 

v5 

v8 

v4 

v6 

v9 

v13 
2 1 -1 

3 

-3 

1 

5 

2 
-2 

-3 0 

Depth 4 v10 v11 v12 

2 

0 0 0 

2 1 0 

3 
5 

-6 3 2 
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w(v) – depth 3 nodes  

Depth 0 

Depth 1 

Depth 2 

Depth 3 

v0 

v2 v3 

v7 

v1 

v5 

v8 

v4 

v6 

v9 

v13 
2 1 -1 

3 

-3 

1 

5 

2 
-2 

-3 0 

Depth 4 v10 v11 v12 

2 

0 0 0 

2 1 0 

3 
5 

4 
3 2 

-6 3 2 
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w(v) – depth 4 nodes  

Depth 0 

Depth 1 

Depth 2 

Depth 3 

v0 

v2 v3 

v7 

v1 

v5 

v8 

v4 

v6 

v9 

v13 
2 1 -1 

3 

-3 

1 

5 

2 
-2 

-3 0 

Depth 4 v10 v11 v12 

2 2 3 -6 

0 0 0 

2 1 0 

3 
5 

4 
3 2 

0 6 5 
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 Highest Weight Paths on WDAGs (cont’d)  

• To reconstruct best path, need “traceback” pointer to 
immediate predecessor of v in best path: 

 

 

 

 

– in preceding graph, T(v) is the parent on red edge coming 
into v 

• if more than one such edge, pick one at random;  

• if no such edge, T(v) = v 

• Sometimes useful to record beginning of best path: 
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• Then highest weight of any path in graph is 

                                     maxv V (w(v)) 

–  updated as each node is visited  

• indicated by        in preceding graph –  

    and so doesn’t require additional pass through vertices  

• if u = argmaxv  V (w(v)), can reconstruct highest weight 
path by tracing back from u, using T:  

– path ends at u;  

– immediate predecessor of u is T(u);  

– predecessor of  T(u) is T(T(u)); etc. 

– stop when T(v) = v. 

 

• In preceding example, highest weight is 6 and u = v11 

  

 Highest Weight Paths on WDAGs (cont’d)  
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Dynamic programming on WDAGs 

Depth 0 

Depth 1 

Depth 2 

Depth 3 

v0 

v2 v3 

v7 

v1 

v5 

v8 

v4 

v6 

v9 

v13 
2 1 -1 

3 

-3 

1 

5 

2 
-2 

-3 0 

Depth 4 v10 v11 v12 

2 2 3 -6 

0 0 0 

2 1 0 

3 
5 

4 
3 2 

0 6 5 
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Complexity of Dynamic Programming 

• Time to find a best path is O(|E|+|V|):  

– in initial pass, visit each node, and each edge into that 

node: O(|E|+|V|) 

– in traceback, visit subset of nodes, and unique edge 

from each node: O(|V|) 

   (Complexity to find all highest weight paths can be 

higher) 

    For very large graphs, even O(|E|+|V|) may be 

unacceptable! 
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Complexity Analysis (cont’d) 

• Space requirements:  

– If only want weight of best path, and beginning and end, 

then  

– don’t need T(v), and  

– only need retain w(v) and B(v) until have processed all children 

of v (or when best path found so far ends at v).  

   Space depends on graph structure, but usually << O(|V|).  

– If want path itself, must store T(v)  v  

– space = O(|V|)  

–  algorithms (for some graphs) to reduce this, but may take 

more time. 
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Implementing Dynamic Programming 

in a Computer Program 

• Storing entire graph has space complexity = 

O(|V|+|E|) 

• If graph has regular structure, can often “create” and 

process vertices and edges on the fly, without 

storing in memory 

– cf. edit graph (to be defined later) for aligning sequences 
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Same dynamic programming approach 

can be used to find: 

1. Highest product weight path (if weights are  0) 

2. Highest weight path that  

– starts in particular subset V’ of vertices,  

• don’t consider paths that start outside V’ :  

  i.e. when computing w(v), don’t consider trivial path unless v V’ 

– and/or ends in particular subset V’’ 

• only scan for the maximum w(v) over V’’  

3. Sum of product weights of all paths ending at 
particular vertex 

– sum over all edges coming into v, instead of maximizing 

– this useful for probability calculations 

• Will use the above variants later! 


