
Today’s Lecture 

• Finding multiple high-scoring segments 

 

• “D-segments” 

– relationship to 2-state HMMs 

 

• Sequence alignment & evolution 
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50 100 -75 

score = 75, but does not satisfy P1 

maximal-scoring segments 

contained in 

higher-scoring 

segment 

• A maximal(-scoring) segment I is one such that  

– P1: no subsegment of I has a higher score than I 

– P2: no segment properly containing I satisfies P1 

• Example: 
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• Problem: given S > 0, find all maximal segs of score  S 

• Segments are paths in a linked-list WDAG with N+1 

vertices and N edges  

• Highest weight path is found by dynamic programming; 

  in (pseudo-)pseudocode: 

      cumul = max = 0;  start = 1;  

      for (i = 1; i  N; i++)  { 

   cumul += s[i]; 

   if (cumul  0) 

   {cumul = 0;  start = i + 1;}  /* NOTE RESET TO ZERO */ 

   else if (cumul  max)  

   {max = cumul;  best_end = i;  best_start = start;} 

      } 

      if (max  S) print best_start, best_end, max 
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Maximal segments – from cumulative score plot  

(without 0 resets) 

maximal segment 

start (local minimum) 

end (local maximum) 
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• Can find all maximal segs of score  S using 

following practical (but non-optimal) algorithm: 

cumul = max = 0;  start = 1;  

for (i = 1; i  N; i++) { 

cumul += s[i];  

if (cumul  max)  

{max = cumul; end = i;} 

if (cumul  0 or i == N) { 

if (max  S)  

 {print start, end, max;   i = end; }  /* N.B. MUST BACKTRACK! */ 

max = cumul = 0;  start = end = i + 1; 

} 

} 
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1st maximal segment 2d maximal segment 

‘backtracked’ region – 

scanned twice 
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• In worst case this is O(N2) (because of 

backtracking),  

– but in practice usually O(N) because a given 

base is usually traversed only a few times 

• Ruzzo-Tompa algorithm guarantees O(N) 
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• undesirable aspect of maximal segments as so 

defined:  

– single maximal seg may contain two (or more) high-

scoring regions, separated by significant negative-

scoring regions 

– i.e. two possibly biologically distinct target occurrences 

get merged into one maximal segment   
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50 100 -45 

now entire segment has score = 105, & satisfies P1 and P2 

• Example: 
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A better problem! 

• to avoid this, have max allowed ‘dropoff’ D 

< 0  

• D-segment is segment without any 

subsegments of score < D  

• maximal D-segment is D-segment I such 

that  
• P1: no subsegment of I has higher score than I 

• P2:  no D-segment properly containing I satisfies P1 

• Problem: given S ( –D), find all maximal 

D-segs of score  S 

– (algorithm fails if S < –D) 
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Maximal D-segments 

1st maximal D-segment 2d maximal D-segment 

maximal segment 

D: 
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• O(N) algorithm to find all maximal D-segs: 

cumul = max = 0; start = 1;  

for (i = 1; i  N; i++) { 

cumul += s[i];  

if (cumul  max)  

{max = cumul; end = i;} 

if (cumul  0 or cumul  max + D or i == N) { 

if (max  S)  

 {print start, end, max; }  

max = cumul = 0; start = end = i + 1; /* NO BACKTRACKING 

NEEDED! */ 

} 

} 
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• So more biologically relevant problem is also 

computationally simpler! 

• what are appropriate S and D?  

– mainly an empirical question (based on known 

examples); altho 

• interpretation via 2-state HMM (next slide) can be useful 

• Karlin-Altschul theory tells when they are ‘statistically 

significant’ 
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D-segments & 2-state HMMs 

• Consider 2-state HMM  

– states 1 & 2, transition probs a11, a12, a21, a22 

– observed symbols {r}, emission probs {e1(r)}, {e2(r)} 

• Define  

scores s(r) = log(e2(r) a22/(e1(r) a11)) 

S = D = log(a11a22/(a21a12)) 

• Then if S > 0, the maximal D-segments in a sequence  

    (ri)i =1, n are the state-2 segments in the Viterbi parse. 

• So via D-segment algorithm can get Viterbi parse in just 
one pass through the sequence! 

• can allow for non-.5 initiation probs by starting cumul at 
non-zero value 
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• For HW 3,  implement D-segment 

algorithm to find CNVs 

– data: next-gen read alignments to genome 

– observed symbols are counts of # read starts at 

each position (0, 1, 2,  3) 

– 2 states: non-dup, dup (dup has twice as many 

read starts per base as non-dup state) 

– emission probs given by Poisson dist’n with 

approp mean 

– transition probs set empirically 
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CNVs & Read Depth 

• CNV = ‘copy number variant’– e.g. region that is single 

copy in reference sequence but duplicated in sample 

• One way to detect: map reads from sample onto 

reference, look for regions of atypical coverage depth 

‘Single-copy’ in sample 

and reference 
multi-copy in sample 



D-Segments – concluding remarks 

• Powerful tool for analyzing ‘linear’ data 

– Single sequences (incl. motifs, numerical data) 

– Fixed alignment 

• Strengths: 

– Very simple to program 

– Very fast, even for mammalian genomes 

• Main limitation: 

– Only allows two types of segments (‘target’ and 

‘background’) 

• Essentially a generalization of 2-state HMMs 

•  multi-state HMMs are more flexible 
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Aligning sequences 

• Major uses in genome analysis: 

– To find relationship between sequences from “same” genome  

• (still need to allow for discrepancies – due to errors/polymorphisms) 

    E.g.   

• finding gene structure by aligning cDNA to genome 

• assembling sequence reads in genome sequencing project 

• NextGen applications: “Resequencing”, ChIPSeq, etc 

– To detect evolutionary relationships: 

• illuminates function of distantly related sequences under selection 

• finds corresponding positions in neutrally evolving sequence  

– to illuminate mutation process  

– helps find non-neutrally evolving (functional) regions 
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• Often we’re interested in details of alignment  

– (i.e. precisely which residues are aligned),  

    but 

•  sometimes only interested in whether alignment 

score is large enough to imply that sequences 

are likely to be related 
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Sequences & evolution 

• Similar sequences of sufficient length usually 

have a common evolutionary origin  

– i.e. are homologous  

• For a pair of sequences 

– “% similarity” makes sense  

– “% homology” doesn’t 

• In alignment of two homologous sequences 

– differences mostly represent mutations that occurred 

in one or both lineages, but  

– Not all mutations are inferrable from the alignment 
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...accgaatcgggtcccgtta... 

...accgaatcaggtcccgtta... 

...accgaatcaggtcccgtca... 

...acagaatcgggtcccgtta... 

...acagaatcaggtcccgtta... 

...acagaatcagggtcccgtta... 

...acagaatcagggtcccgtta... 

...accgaatcagg-tcccgtca... 

...acagaatcagggtcccgtta... ...accgaatcaggtcccgtca... 

ONLY OBSERVED SEQUENCES 

(Observed)  ALIGNMENT: 

(may not be unique!) 

(Unobserved) MUTATION HISTORY (in general, this is not 

even inferrable!): 
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Complications 

• Parallel & back mutations  

  estimating total # of mutations requires 

statistical modelling 

• Insertion/deletion, & segmental mutations  

 finding the correct alignment can be 

problematic (‘gap attraction’) 

     -- even in closely related sequences! 

 


