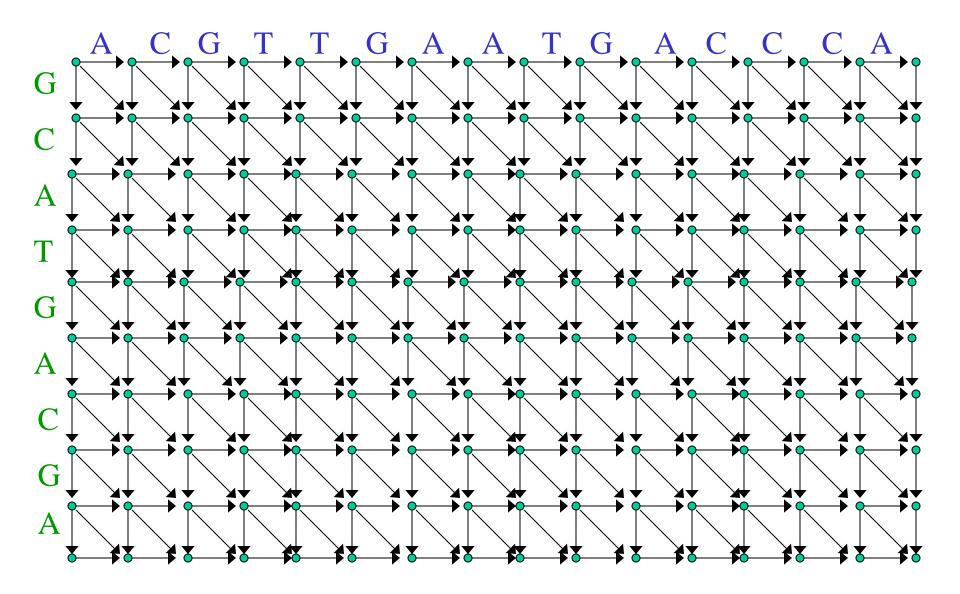

Today's Lecture

- Multiple sequence alignment
- Improved scoring of pairwise alignments
 - Affine gap penalties
 - Profiles
- Smith-Waterman special cases

The Edit Graph for a Pair of Sequences



- # edges & # vertices are proportional to product of sequence lengths.
 - For k sequences of size N, is of order $O(N^k)$
 - impractical even for proteins ($N \sim 300$ to 500 residues) if k > 5: $300^5 = 2.4 \ 10^{12}$

Multiple alignments: paths in huge WDAGs

- To find high-scoring paths, need to
 - reduce size of graph
 - restrict allowed weighting schemes, and/or
 - sacrifice optimality guarantees
- Durbin et al. discuss methods implementing these ideas:
 - Hein
 - Carillo-Lipman
 - progressive alignment (e.g. Clustal)
- HMMs provide nice (but not guaranteed optimal) approach for constructing multiple alignments

The Edit Graph for a Pair of Sequences

Better Scoring Models

- Optimal alignment scoring depends on probabilistic modelling (to be discussed later).
- Inherent limitation of dynamic programming: each alignment column (edge in WDAG) scored independently
 - biologically unrealistic, but
 - required for dynamic programming to work!

- Two strategies to allow allow partial non-independence while preserving dynamic programming framework:
 - Enhance graph
 - Allow scores to depend on position within the sequence (i.e. not just on a BLOSUM-type score matrix)
 - so some substitutions (of same residues) or gaps penalized more heavily than others

Gap Penalties

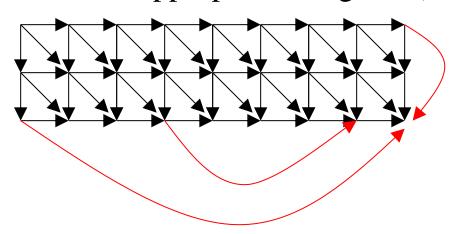
TNAVAHVD----DMPNAL YEAAIQLQVTGVVVTDATL

- Usual scoring scheme assigns same penalty *g* to each gap edge, so
 - weights on extended gaps of size s are *linear* in s, i.e.
 - total gap penalty $gap(s) = s \times g$.
 - e.g. in above example, if each g = -6, total penalty on gap would be

$$gap(5) = 5 \times -6 = -30$$

Gap Penalties

- Would like more flexible gap penalties:
- In proteins, insertions & deletions are rare;
 - but when occur, often consist of several residues, because
 - they are in regions (loops) tolerant of length changes
 - at DNA level, indels in protein coding sequence usually a multiple of 3 nucleotides
 - otherwise, would change reading frame
- In noncoding sequence,
 - the most common indel size is 1
 - but larger indels occur much more frequently than multiple independent single-base indels


- Can allow arbitrary *convex* gap penalties
 - $-gap(s+t) \ge gap(s) + gap(t)$, where s and t are (integer) gap sizes

by extending edit graph:

- add edges corresponding to *arbitrary length* gaps from each vertex to each horizontally or vertically downstream vertex
- (convexity condition prevents favoring two adjacent short gaps over a single long gap).

Time complexity now O(MN(M+N))

- often unacceptable for moderate M, N.
- Also: how to choose appropriate weights? (need data to estimate!)

Affine Gap Penalties

- Affine gap penalties:
 - less general than arbitrary convex penalties, but
 - more general than linear penalties.
- Two parameters:
 - gap opening penalty g_o
 - gap extension penalty g_e
- gap(n) (penalty for size n gap) is then

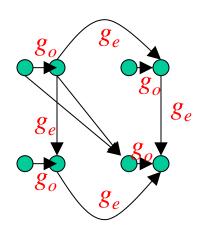
$$g_o + n g_e = g_i + (n-1) g_e$$

where the gap *initiating* penalty $g_i = g_o + g_e$

• Example: for BLOSUM62, good penalties are

$$-g_i = -12,$$

$$-g_e = -2$$


These perform *much* better than linear penalty

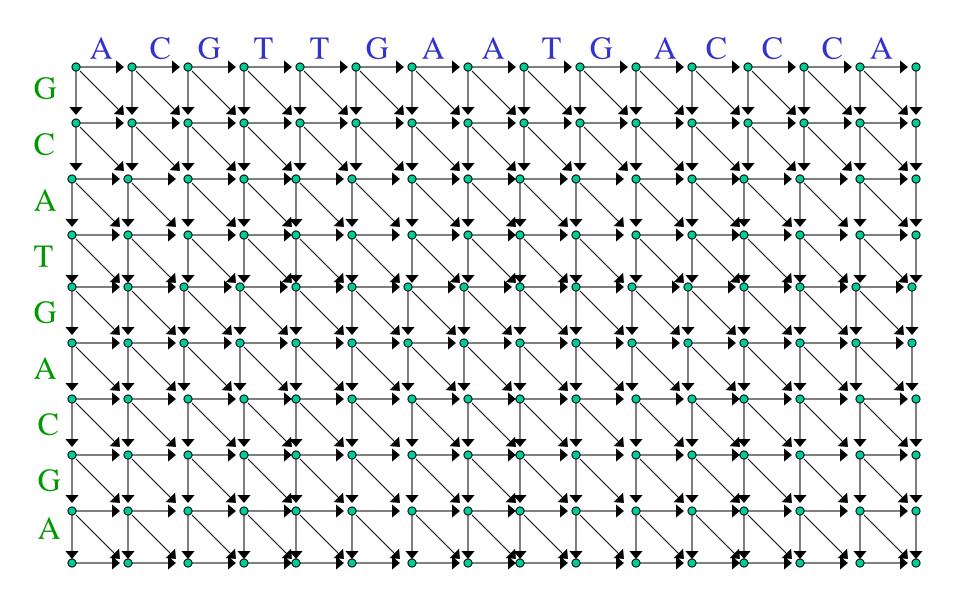
$$-$$
 (e.g. $g = -6$)

- N.B. Durbin *et al.* reverse g_i and g_o
 - $-g_i$ is called the 'gap opening' penalty
- Can obtain affine penalties using extension of edit graph, retaining complexity O(MN):

Edit Graph for Affine Gap Penalties

Double # vertices, creating left-right pair in place of each original vertex. Each cell looks like this:

each left vertex has out-degree and in-degree = 2

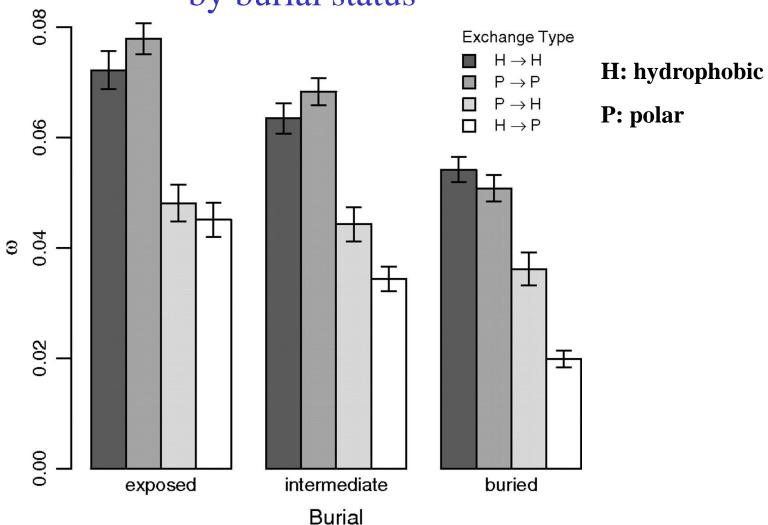

each right vertex has out-degree and in-degree = 3

- gap-opening edges from left vertex to right vertex of each pair : weight g_o
- gap extension edges going horizontally or vertically between right vertices : weight g_e
- diagonal edges originate from either left or right vertex, but always go to a left vertex.

- Paths in the augmented graph still correspond to alignments
 - can ∃ more than one path for same alignment
 - but highest scoring paths still give best alignments
- Score assigned to size n gap is $g_o + n g_e$
 - -i.e. affine penalty
- Smith-Waterman-Gotoh algorithm

Profiles (position-specific scoring)

The Edit Graph for a Pair of Sequences


• *Profiles*: *Position-specific* scoring scheme specifying score of each possible substitution at each position of a sequence

		-									
	Cons	с- в А	С	D	Ε	T	ν	W	Y	0	Ext
ļ	G	5 A	-14	-1	E.	6	4	-34	-22	Open 28	28
	P	5				1	-4			28	
l i	L.	-18	-26 -31	-40	1		-	-48	-31		28
П	T	7			-35	-16	13	-31	-9	100	100
	-	_	-21	-4	-6	10	-3	-38	-28	100	100
l J	E	6	-37	11	12	2	-10	-61	-38	100	100
	A	5	-34	3	4	1	-B	-48	-34	100	100
	E	Ü	-53	26	31	-5	-29	-60	-42	100	100
	R	-11	-45	-11	-13	-3	~21	-2	-3.3	100	100
	T	4	-28	-,2	-1	8	7	-51	-24	100	100
Ì	M	-7	-47	-6	-6	-3	-6	-35	-26	100	100
	V	0	~20	-22	-36	2	41	-56	-27	100	100
	X	- 9	-44	-1.1	-11	0	-5	-29	-31	100	100
	N	5	-27	7	6	8	-11	-40	-32	100	100
i	A,	7	-27	-4	-6	4	5	-46	-31	100	100
	W	-47	-69	-58	-60	-40	-49	139	-6	100	100
	G	11	-31	5	1	3	-5	-65	-43	100	100
	K	-2	-46	5	8	-1	-23	-49	-45	100	100
	V	-4	-23	-27	-45	-2	34	-48	-18	100	100
	L	-3	-9	-6	-5	-3	3	- 3	-1	26	26
	N	- 4	-26	3	2	-4	-19	~31	-9	26	26
	A.	4	-16	0	1	2	-12	-40	-10	26	26
	H	0	-30	1.4	10	3	-15	-41	-21	100	1.00
	1	-2	-20	-18	-23	-1	17	-50	-11	100	100
								_			

From R. Luthy, I. Xenarios and P. Bucher, Improving the sensitivity of the sequence profile method *Protein Sci.* 3: 139-146 (1994)

- This is an important improvement!
 - reflects fact that different parts of sequence may evolve at different rates
- e.g. in proteins,
 - internal core region of tightly packed residues, or active sites of enzyme, are more highly conserved;
 - surface residues, particularly in loops, often less conserved.
 - so scores tend to be correlated (high scores in core, lower on surface)

Rates of amino acid exchange in mammalian proteins by burial status

Saunders & Green Mol Biol Evol 2007 24:2632-2647; doi:10.1093/molbev/msm190

Molecular Biology and Evolution

PSIBLAST approach:

- initially compare query sequence to database sequences (using BLOSUM-type scoring matrix),
- build profile using initial matches
- rescan database using profile
- Optimal choice of
 - substitution matrix,
 - gap penalties, or
 - profiles

depends on probabilistic modelling (to be discussed later!)

Smith-Waterman special cases

- Various special cases are optimal path problems for *subgraphs* of edit graph:
- Gap-free alignments correspond to paths confined to a diagonal of edit graph
 - (i.e. subgraph without horizontal & vertical edges).
- Find perfectly matching segments using weights
 - +1 for identical residue pair,
 - $-\infty$ (or large negative penalty) for mismatches or gaps.

Less efficient than "sorting pointers" method from lecture 1 / HW1.