Today's Lecture

- Multiple sequence alignment
- Improved scoring of pairwise alignments
	- Affine gap penalties
	- Profiles
- Smith-Waterman special cases

The *Edit Graph* for a Pair of Sequences

- # edges & # vertices are proportional to product of sequence lengths.
	- $-$ For *k* sequences of size *N*, is of order $O(N^k)$
		- impractical even for proteins ($N \sim 300$ to 500 residues) if $k > 5$:

 $300^5 = 2.4 10^{12}$

Multiple alignments: paths in huge WDAGs

- To find high-scoring paths, need to
	- reduce size of graph
	- restrict allowed weighting schemes, and/or
	- sacrifice optimality guarantees
- Durbin *et al.* discuss methods implementing these ideas:
	- Hein
	- Carillo-Lipman
	- progressive alignment (e.g. Clustal)
- HMMs provide nice (but not guaranteed optimal) approach for constructing multiple alignments

The *Edit Graph* for a Pair of Sequences

Better Scoring Models

- Optimal alignment scoring depends on probabilistic modelling (to be discussed later).
- Inherent limitation of dynamic programming: each alignment column (edge in WDAG) scored independently
	- biologically unrealistic, but
	- required for dynamic programming to work!
- *Two strategies to allow* allow partial non-independence while preserving dynamic programming framework:
	- Enhance graph
	- Allow scores to depend on position within the sequence (i.e. *not* just on a BLOSUM-type score matrix)
		- so some substitutions (of same residues) or gaps penalized more heavily than others

Gap Penalties

TNAVAHVD-----DMPNAL YEAAIQLQVTGVVVTDATL

- Usual scoring scheme assigns same penalty *g* to each gap edge, so
	- weights on extended gaps of size *s* are *linear* in *s*, i.e.
	- $-$ total gap penalty $gap(s) = s \times g$.
	- e.g. in above example, if each $g = -6$, total penalty on gap would be

$$
gap(5) = 5 \times -6 = -30
$$

Gap Penalties

- Would like more flexible gap penalties:
- In proteins, insertions & deletions are rare;
	- but when occur, often consist of several residues, because
		- they are in regions (loops) tolerant of length changes
	- at DNA level, indels in protein coding sequence usually a multiple of 3 nucleotides
		- otherwise, would change reading frame
- In noncoding sequence,
	- the most common indel size is 1
	- *but* larger indels occur much more frequently than multiple independent single-base indels
- Can allow arbitrary *convex* gap penalties
	- $-gap(s+t) \geq gap(s) + gap(t)$, where *s* and *t* are (integer) gap sizes
	- by extending edit graph:
		- add edges corresponding to *arbitrary length* gaps from each vertex to each horizontally or vertically downstream vertex
		- (convexity condition prevents favoring two adjacent short gaps over a single long gap).
	- Time complexity now *O*(*MN*(*M+N*))
		- often unacceptable for moderate *M, N*.
		- Also: how to choose appropriate weights? (need data to estimate!)

Affine Gap Penalties

- *Affine* gap penalties:
	- less general than arbitrary convex penalties, but – more general than linear penalties.
- Two parameters:
	- *gap opening* penalty *g^o*
	- *gap extension* penalty *g^e*
- *gap*(*n*) (penalty for size *n* gap) is then

$$
g_o + n g_e = g_i + (n-1) g_e
$$

where the gap *initiating* penalty $g_i = g_o + g_e$

- Example: for BLOSUM62, good penalties are $-g_i = -12$
	- $g_e = -2$

These perform *much* better than linear penalty

 $-$ (e.g. $g = -6$)

- N.B. Durbin *et al.* reverse g_i and g_o $-g_i$ is called the 'gap opening' penalty
- Can obtain affine penalties using extension of edit graph, retaining complexity *O*(*MN*):

Edit Graph for Affine Gap Penalties

Double # vertices, creating left-right pair in place of each original vertex. Each cell looks like this:

each left vertex has out-degree and in-degree = 2

each right vertex has out-degree and in-degree = 3

• gap-opening edges from left vertex to right vertex of each pair : weight *g^o*

• gap extension edges going horizontally or vertically between right vertices : weight *g^e*

• diagonal edges originate from either left or right vertex, but always go to a left vertex.

- Paths in the augmented graph still correspond to alignments
	- can \exists more than one path for same alignment
	- but highest scoring paths still give best alignments
- Score assigned to size *n* gap is $g_{o} + n g_{e}$ – *i.e.* affine penalty
- Smith-Waterman-Gotoh algorithm

Profiles (position-specific scoring)

The *Edit Graph* for a Pair of Sequences

• *Profiles*: *Position-specific* scoring scheme specifying score of each possible substitution at each position of a sequence

c٠ a.												
	Cons	Ã.	- C	Đ	$\mathbf E$	α , α , α	$\mathbf T$	v	W	Ÿ	Open	Ext
	Ġ	7	-1.4	-1	- 5	α , α , α	6	4	-34	-22	28	28
	P	5	-26	4	1	المناسبة والمنا	1	$-4\,$	-48	-31	28	28
	L.	-1.8	-31	-4.0	-35	e a s	-16	13	-31	- 명	100	100
	Ť	7	-21	-4	-6	α , α , α	10	-3	-38	-28	100	100
	$\mathbb E$	6	-37	11	12	α , α , α	2	-1.0	-61	-38	100	100
	A.	5	-34	- 3	- 4	a a s	1	- 6	-48	-34	100	100
	Е	Ó	-53	26	31	$\alpha = \alpha = 1$	-5	-29	-60	-42	100	100
	R	-11	-45	$-11.$	-13	α , α , α	-3	-21	-2	-33	100	100
	т	4.	-28	-2	-1	$\sim 10^{-1}$	8	T.	$-51.$	-24	100	100
	M	$=7$	-47	-6	-6	α , α , α	-3	-6	-35	-26	100	100
	V	Ō	-20	-22	-36	$\alpha = \alpha - \beta$	\bar{Z}	41	-56	-27	100	100
	x	- 9	-44	-11	-11	\mathbf{r}	O.	-5	-29	-31	100	100
	N	-5	-27	- 7	- 6	$\alpha = \alpha - \alpha$	$\mathbb R$	-11	-40	-32	100	100
	A.	7	-27	-4	-6	α and α	4	5	-46	-31	100	100
	W	-47	-69	-58	-60	a a s	-40	-49	139	- 6	100	100
	G	11	-31	-51	ı	α , α , β	$\bar{3}$	-5	-65	-43	100	100
	К	-2	-46	5	8	ϵ , ϵ , ϵ	-1	-23	-49	-45	100	100
	V	-4	-23	-27	-45	ϵ , ϵ , ϵ	-2	34	-48	-1.8	100	100
	t.	- 3	- 9	-6	$\equiv \overline{E_1}$	α , α , α	- 3	B	-3	-1	26	26
	N	$= 4$	-26	$\bar{\mathbf{3}}$	\bar{Z}	ϵ , ϵ , ϵ	-4	-19	-31	-9	26	26
	A,	А.	-16	-0	1	α , α , α	2	-12	-40	-10	26	26
	к	Đ.	-30	14	10	α , α , α	3	-15	-41	-21	100	100
	T.	-2	-20	$-1.8.$	-23	$\sim 10^{-1}$	-1	17	$-50.$	-11	100	100

From **R. Luthy, I. Xenarios and P. Bucher, Improving the sensitivity of the sequence profile method** *Protein Sci.* **3: 139-146 (1994)**

- This is an important improvement!
	- reflects fact that different parts of sequence may evolve at different rates
- e.g. in proteins,
	- internal core region of tightly packed residues, or active sites of enzyme, are more highly conserved;
	- surface residues, particularly in loops, often less conserved.
	- so scores tend to be correlated (high scores in core, lower on surface)

Rates of amino acid exchange in mammalian proteins by burial status

- PSIBLAST approach:
	- initially compare query sequence to database sequences (using BLOSUM-type scoring matrix),
	- build profile using initial matches
	- rescan database using profile
- Optimal choice of
	- substitution matrix,
	- gap penalties, or
	- profiles

 depends on probabilistic modelling (to be discussed later!)

Smith-Waterman special cases

- Various special cases are optimal path problems for *subgraphs* of edit graph:
- *Gap-free* alignments correspond to paths confined to a diagonal of edit graph
	- (i.e. subgraph without horizontal & vertical edges).
- Find *perfectly* matching segments using weights +1 for identical residue pair,

 $-\infty$ (or large negative penalty) for mismatches or gaps.

Less efficient than "sorting pointers" method from lecture 1 / HW1.