Today’s Lecture
« Smith-Waterman special cases

« Word nucleation algorithms
— BLAST

 Probability models for sequences



The Edit Graph for a Pair of Sequences
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« Find imperfect internal repeats by searching edit graph of
sequence against itself

— 1.e. the same sequence labels columns and rows

above (& not including) the main diagonal:
— If include main diagonal, best path will be identity match to self
— complexity = O(N?) where N = sequence length.
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Graph for finding imperfect
Internal repeats:




 Find short tandem repeats (e.g. microsatellites,
minisatellites):
— scan a band just above main diagonal.
— Complexity = O(kN) where k is width of the band.
— Manageable even for large N, if k small.
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 Other alignment tasks:
— EST, or cDNA, to genomic sequence (exons)
— protein to genomic.

« Can solve by variants of Smith-Waterman:

—e.g. cDNA vs genomic:
* set moderately large negative penalty for mismatch and for
gap opening,
» O for gap extension.
» issue of proper placement of splice sites ...



Word Nucleation Algorithms

» |dea: find short (perfect or imperfect) word matches to
‘nucleate’ graph search
— Each such match defines short diagonal path
— Only search part of graph ‘surrounding’ this path

 BLAST: allow imperfect short (e.g. length 3) matches.

— “Neighbors”: set of 3-residue sequences having > min score T
against some 3-residue sequence of query

— Scan database segs until hit word in neighbor list

— then do ungapped extension (along diagonal defined by word
match)
* ‘significant’ matches are those with scores > a threshold S

« Ungapped matches are effective for detecting related proteins:
— true protein alignments usually include substantial gap-free regions.



BLAST: Word Nucleating Alignment
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— If find > 2 significant ungapped matches in same seq,
expand search to connecting region of matrix, allowing

gaps:






Other Word Nucleation Programs

« FASTA:

— look for clusters of short exact matches, on
nearby diagonals;

— when found, extend to gapped alignment

e Cross_match:
— do full search of bands around exact matches

* These all still time complexity O(MN)
— because # word matches proportional to MN

but with much smaller constant.
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* |n database searches, most seqgs unrelated to query

» suggests following strategy:

— Initial rapid pass through database using fast algorithm
* e.g. Just looking for gap-free matches

to get (approximate) score,
— Identify sequences having scores above a threshold
— use full Smith-Waterman on latter

— for appropriate (low) threshold can get sensitivity nearly
as good as full Smith-Waterman search.

11



 Important issue: statistical significance for
database searches! We will return to this later.
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Biology involves probabilities,
at several levels:

Fundamental laws of nature
Mutations (imperfect replication)

Transmission of DNA from parent to
offspring In populations of individuals

Random aspects of environment
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Key Physical Laws Governing
Living Organisms

 Individual atoms & molecules:
— guantum mechanics / guantum electrodynamics

» Systems of molecules:
— statistical mechanics / 2d law of thermodynamics

These fundamental laws are essentially probabilistic!

“The true logic of this world is in the calculus of probabilities”
— James Clerk Maxwell

“I cannot believe that God plays dice with the cosmos” —
Albert Einstein; nonetheless two of his three great 1905
papers dealt with statistical aspects of nature (photoelectric
effect & Brownian motion)!
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Probability Models of Sequences

« Sample questions in genome sequence analysis:
— Is this sequence a splice site?
— Is this sequence part of the coding region of a gene?
— Are these two sequences evolutionarily related?
— Does this sequence show evidence of selection?

« Computational analysis can’t answer:
— only generates hypotheses
which must ultimately be tested by experiment.
 But hypotheses should

— have some reasonable chance of being correct, and
— carry indication of reliability.
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» We use probability models of sequences to address
such questions.

 Not the only approach, but usually the most
powerful, because

— seqs are products of evolutionary process which is itself
probabilistic

— want to detect biological “signal” against “noise” of
background sequence or mutations.
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“All models are wrong; some models are useful.”
— George Box

“What is simple is always wrong. What is not is
unusable.” — Paul Valery
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Basic Probability Theory Concepts

« A sample space S is set of all possible outcomes of a
conceptual, repeatable experiment.

— |S] < oo In most of our examples.
— e.g. S = all possible sequences of a given length.
» Elements of S are called sample points.

— e.g. a particular seq = outcome of “experiment” of extracting seq
of specified type from a genome.

A probability distribution P on S assigns non-neg real
number P(s) to each s €S, such that
2:%68 P(S) =1
(SO0<P(s) <1 Vs)

— Intuitively, P(s) = fraction of times one would get s as result of the
expt, if repeated many times.
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A probability space (S,P) Is a sample space S with a
prob dist’n P on S.

* Prob dist’n on S Is sometimes called a probability

model for S, particularly if several dist’ns are being
considered.

— Write models as M,, M,, , probabilities as P(s | M,),
P(s | My).

—e.g.

* M, = prob dist’n for splice site seqs,

* M, =prob dist’n for “background” (arbitrary genomic) seqs.
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Basic Probability Theory Concepts
(cont’d)

e An event E Is a criterion that 1s true or false for each
seS.

— defines a subset of S (sometimes also denoted E).
— P(E) 1s defined to be Xy iq e P(S)-

« EventsE,, E,, ..., E, are mutually exclusive if no
two of them are true for the same point;
—thenP(E;orE, or...orE) =%, ., P(E).

- IfE., E,, ..., E, are also exhaustive, I.e. every sin S
satisfies E; for some I, then X, .. P(E;) = 1.
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 For events E and H, the conditional probability of E
given H, Is
P(E|H)= P(Eand H) /P(H)
(= prob that both E and H are true, given H is true)
— undefined if P(H) = 0.
« E and H are (statistically) independent if
P(E) = P(E|H)
(i.e. prob. E is true doesn’t depend on whether H Is true);

or equivalently
P(E and H) = P(E)P(H).
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Probabilities on Sequences

« Let S =space of DNA or protein sequences of length n.
Possible assumptions for assigning probabilities to S:

— Equal frequency assumption: All residues are equally probable at
any position;
* P(E,") = P(E,") for any two residues r and g,
— where E,) means residue r occurs at position i, then
« Since for fixed i the E, are mutually exclusive and exhaustive,
P(E,M)=1/|A]
where A = residue alphabet
P(E,") = 1/20 for proteins, 1/4 for DNA).

— Independence assumption: whether or not a residue occurs at a
given position is independent of residues at other positions.
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» Given above assumptions, the probability of the sequence
s =ACGCG
(in the space S of all length 5 sequences) is calculated by
considering 5 events:
— Event 1 is that first nuc is A.  Probability = .25.
— Event 2 isthat 29 nucisC.  Probability = .25.
— Event3isthat3%nucis G.  Probability = .25.
— Event4isthat4t nucis C.  Probability = .25.
— Event5isthat 5" nucis G.  Probability = .25.

By independence assumption, prob of all 5 events occurring
IS the product (.25)° = 1/1024.

Since s Is the only sequence satisfying all 5 conditions, P(s)
= 1/1024.
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» More generally, under equal freq and indep
assumptions,

prob of nuc sequence of lengthn = .25",
prob of protein sequence of lengthn = .05"

In the space S of length n sequences.
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