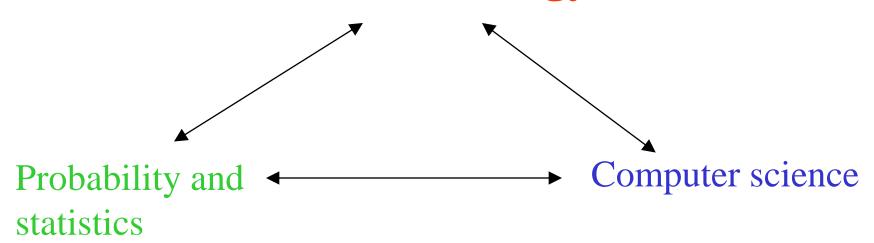
Genome 540

Introduction to Computational Molecular Biology:

Genome and protein sequence analysis

Today's Lecture


Course overview

Administrative details

• Finding exact matches in sequences using suffix arrays

Computational Molecular Biology

Molecular biology

Course Lecture Content

DNA and protein sequences

- Algorithms
 - Dynamic programming

- Probability models
 - HMMs

We do *not* cover:

- 'Non-linear' (non-sequence based) computational biology
 - protein structure, expression arrays, metabolic pathways, models for interacting molecules ...
- 'Machine learning' applications
- Existing software tools

Course Prerequisites

- You *must*
 - be able to write programs for data analysis
 - have access to a computer where you can write & run your programs

HW assignment # 1 will be a good test!

- Some previous familiarity with
 - probability and statistics
 - molecular biology
 - is highly desirable
 - (if you lack it, you will have to work harder!)

Course Requirements

- Homework
- No tests or exams
- Attendance at discussion section strongly encouraged but not required
- Ask questions!
 - in lecture
 - at discussion section
 - by email
 - (via message board)

Homework

- Due weekly, Sunday at midnight
 - Posted on web site approx 1.5 weeks in advance
 - Each is 10 pts, late penalty of 1 pt/day (max penalty 3 pts)
 - Can redo
- write computer program to analyze genomic data set
 - "From scratch", i.e. not using prewritten routines from elsewhere
 - Run on your own computer
 - Programming language is up to you but a compiled language
 (e.g. C, C++) is recommended for efficiency reasons
 - Python + Cython also works
 - Interpreted language may work, but risky!

- Also: readings (in textbooks, or journal articles)
- turn in results of analysis, and your program, with (in some cases) a written interpretation of the results;
 - all to be submitted by email in computerreadable format

Course Info

- Instructors (contact info is on web page):
 - Phil Green
 - TA: Mitchell Vollger

- Office hours by appointment (send Mitchell or me an email)
- if you did not receive the email I sent yesterday, send me (phg@uw.edu) your email address today (whether or not you are registered!)

- Lectures: TuTh 10:30-11:50, Foege S-110
- Weekly discussion section:
 - discuss homework, answer questions
 - review background material
 - related topics (next-gen sequencing?)

Tentative time/place: Th 12-1, Foege S-040

- If you have a conflict, email me your schedule of unavailable times -- we may be able to find another
- Web site: http://www.phrap.org/compbio/mbt599
 - will post HW assignments, copies of lecture & discussion section slides here
 - has link to last year's site for approx syllabus & slides

Texts (will follow only loosely):

- Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids by Durbin, Eddy, Krogh & Mitchison. Paperback, ~\$60.
- Statistical Methods in Bioinformatics: An Introduction (Statistics for Biology and Health) by Ewens & Grant. Hardbound, ~\$105. **N.B.** This is the **2D edition!**
- available from UW Bookstore (South Campus Center branch) or from Amazon or Barnes & Noble

Finding perfectly matching subsequences of a sequence

- Idea (*much* more efficient than 'brute force' approach):
 - suffix array (Manber & Myers, 1990)
 - make list of pointers to all positions in sequence
 - lexicographically sort list of strings that are pointed to
 - process the list: adjacent entries are "maximally agreeing"

Suffix array step 1: List of Pointers to Suffixes

ACCTGCACTAAACCGTACACTGGGTTCAAGAGATTTCCC

ACCTGCACTAAACCGTACACTGGGTTCAAGAGATTTCCC p_1 CCTGCACTAAACCGTACACTGGGTTCAAGAGATTTCCC p_2 CTGCACTAAACCGTACACTGGGTTCAAGAGATTTCCC p_3 TGCACTAAACCGTACACTGGGTTCAAGAGATTTCCC p_4 GCACTAAACCGTACACTGGGTTCAAGAGATTTCCC p_5 CACTAAACCGTACACTGGGTTCAAGAGATTTCCC p_6 ACTAAACCGTACACTGGGTTCAAGAGATTTCCC p_7 CTAAACCGTACACTGGGTTCAAGAGATTTCCC p_8 TAAACCGTACACTGGGTTCAAGAGATTTCCC p_9 AAACCGTACACTGGGTTCAAGAGATTTCCC p_{10} AACCGTACACTGGGTTCAAGAGATTTCCC p_{11} ACCGTACACTGGGTTCAAGAGATTTCCC p_{12}

Suffix array step 2: View as Strings to be Compared

ACCTGCACTAAACCGTACACTGGGTTCAAGAGATTTCCC

p_1	ACCTGCACTAAACCGTACACTGGGTTCAAGAGATTTCCC
p_2^-	CCTGCACTAAACCGTACACTGGGTTCAAGAGATTTCCC
p_3^-	CTGCACTAAACCGTACACTGGGTTCAAGAGATTTCCC
p_4	TGCACTAAACCGTACACTGGGTTCAAGAGATTTCCC
p_5	GCACTAAACCGTACACTGGGTTCAAGAGATTTCCC
p_6	CACTAAACCGTACACTGGGTTCAAGAGATTTCCC
p_7	ACTAAACCGTACACTGGGTTCAAGAGATTTCCC
p_8	CTAAACCGTACACTGGGTTCAAGAGATTTCCC
p_9	TAAACCGTACACTGGGTTCAAGAGATTTCCC
p_{10}	AAACCGTACACTGGGTTCAAGAGATTTCCC
p_{11}	AACCGTACACTGGGTTCAAGAGATTTCCC
p_{12}	ACCGTACACTGGGTTCAAGAGATTTCCC

Suffix array step 3: Sort the Pointers Lexicographically

ACCTGCACTAAACCGTACACTGGGTTCAAGAGATTTCCC

p_{10}	AAACCGTACACTGGGTTCAAGAGATTTCCC
p_{11}^{-1}	AACCGTACACTGGGTTCAAGAGATTTCCC
$p_{28}^{}$	AAGAGATTTCCC
p ₁₇	ACACTGGGTTCAAGAGATTTCCC
p_{12}^{-1}	ACCGTACACTGGGTTCAAGAGATTTCCC
p_1	ACCTGCACTAAACCGTACACTGGGTTCAAGAGATTTCCC
p_7	ACTAAACCGTACACTGGGTTCAAGAGATTTCCC
p_{19}	ACTGGGTTCAAGAGATTTCCC
p ₂₉	AGAGATTTCCC
p ₃₁	AGATTTCCC
p ₃₃	ATTTCCC
p ₂₇	CAAGAGATTTCCC
- 21	