
1

Genome 540

Introduction to 

Computational Molecular Biology:

Genome and protein sequence analysis



Today’s Lecture

• Course overview

• Administrative details

• Finding exact matches in sequences using 

suffix arrays

2



33

Computational Molecular Biology

Molecular biology

Probability and 

statistics

Computer science



Course Lecture Content

• DNA and protein sequences

– Algorithms

• Dynamic programming

– Probability models

• HMMs

4



We do not cover:

• ‘Non-linear’ (non-sequence based) 

computational biology 

– protein structure, expression arrays, metabolic 

pathways, models for interacting molecules …

• ‘Machine learning’ applications

• Existing software tools

5



66

Course Prerequisites

• You must

– be able to write programs for data analysis

– have access to a computer where you can write & run 
your programs

HW assignment # 1 will be a good test!

• Some previous familiarity with 

– probability and statistics

– molecular biology

is highly desirable 

– (if you lack it, you will have to work harder!)



77

Course Requirements

• Homework

• No tests or exams

• Attendance at discussion section strongly 

encouraged but not required

• Ask questions!

– in lecture

– at discussion section

– by email

– (via message board)



88

Homework

• Due weekly, Sunday at midnight 
– Posted on web site approx 1.5 weeks in advance

– Each is 10 pts, late penalty of 1 pt/day (max penalty 3 pts)

– Can redo

• write computer program to analyze genomic data 

set
– “From scratch”, i.e. not using prewritten routines from 

elsewhere

– Run on your own computer

– Programming language is up to you – but a compiled language 

(e.g. C, C++) is recommended for efficiency reasons

• Python + Cython also works

• Interpreted language may work, but risky!



• Also: readings (in textbooks, or journal 

articles)

• turn in results of analysis, and your 

program, with (in some cases) a written 

interpretation of the results; 

– all to be submitted by email in computer-

readable format

9



1010

• Instructors (contact info is on web page): 

– Phil Green

– TA: Mitchell Vollger

• Office hours by appointment (send Mitchell or me 
an email)

• if you did not receive the email I sent yesterday,
send me (phg@uw.edu) your email address today
(whether or not you are registered!)

Course Info

mailto:phg@uw.edu


11

• Lectures: TuTh 10:30-11:50, Foege S-110

• Weekly discussion section:
– discuss homework, answer questions

– review background material 

– related topics (next-gen sequencing?)

Tentative time/place: Th 12-1, Foege S-040
– If you have a conflict, email me your schedule of 

unavailable times -- we may be able to find another

• Web site: http://www.phrap.org/compbio/mbt599

– will post HW assignments, copies of lecture & discussion 
section slides here 

– has link to last year’s site – for approx syllabus & slides

http://www.phrap.org/compbio/mbt599


1212

Texts (will follow only loosely): 

• Biological Sequence Analysis: Probabilistic Models of 

Proteins and Nucleic Acids by Durbin, Eddy, Krogh & 

Mitchison. Paperback, ~$60. 

• Statistical Methods in Bioinformatics : An Introduction 

(Statistics for Biology and Health) by Ewens & Grant. 

Hardbound, ~$105. N.B. This is the 2D edition!

• available from UW Bookstore (South Campus Center 

branch) or from Amazon or Barnes & Noble



1313

Finding perfectly matching 

subsequences of a sequence

• Idea (much more efficient than ‘brute force’ 

approach): 

– suffix array (Manber & Myers, 1990)

– make list of pointers to all positions in sequence

– lexicographically sort list of strings that are pointed to

– process the list: adjacent entries are “maximally 

agreeing”



Suffix array step 1:

List of Pointers to Suffixes
ACCTGCACTAAACCGTACACTGGGTTCAAGAGATTTCCC

ACCTGCACTAAACCGTACACTGGGTTCAAGAGATTTCCC
CCTGCACTAAACCGTACACTGGGTTCAAGAGATTTCCC
CTGCACTAAACCGTACACTGGGTTCAAGAGATTTCCC
TGCACTAAACCGTACACTGGGTTCAAGAGATTTCCC
GCACTAAACCGTACACTGGGTTCAAGAGATTTCCC
CACTAAACCGTACACTGGGTTCAAGAGATTTCCC
ACTAAACCGTACACTGGGTTCAAGAGATTTCCC
CTAAACCGTACACTGGGTTCAAGAGATTTCCC
TAAACCGTACACTGGGTTCAAGAGATTTCCC
AAACCGTACACTGGGTTCAAGAGATTTCCC
AACCGTACACTGGGTTCAAGAGATTTCCC
ACCGTACACTGGGTTCAAGAGATTTCCC

.

.

.

p1
p2
p3
p4
p5
p6
p7
p8
p9
p10
p11
p12



Suffix array step 2:

View as Strings to be Compared
ACCTGCACTAAACCGTACACTGGGTTCAAGAGATTTCCC

ACCTGCACTAAACCGTACACTGGGTTCAAGAGATTTCCC
CCTGCACTAAACCGTACACTGGGTTCAAGAGATTTCCC
CTGCACTAAACCGTACACTGGGTTCAAGAGATTTCCC
TGCACTAAACCGTACACTGGGTTCAAGAGATTTCCC
GCACTAAACCGTACACTGGGTTCAAGAGATTTCCC
CACTAAACCGTACACTGGGTTCAAGAGATTTCCC
ACTAAACCGTACACTGGGTTCAAGAGATTTCCC
CTAAACCGTACACTGGGTTCAAGAGATTTCCC
TAAACCGTACACTGGGTTCAAGAGATTTCCC
AAACCGTACACTGGGTTCAAGAGATTTCCC
AACCGTACACTGGGTTCAAGAGATTTCCC
ACCGTACACTGGGTTCAAGAGATTTCCC

.

.

.

p1
p2
p3
p4
p5
p6
p7
p8
p9
p10
p11
p12



Suffix array step 3:

Sort the Pointers Lexicographically
ACCTGCACTAAACCGTACACTGGGTTCAAGAGATTTCCC

.

.

AAACCGTACACTGGGTTCAAGAGATTTCCC
AACCGTACACTGGGTTCAAGAGATTTCCC
AAGAGATTTCCC
ACACTGGGTTCAAGAGATTTCCC

CAAGAGATTTCCC

ACCTGCACTAAACCGTACACTGGGTTCAAGAGATTTCCC
ACCGTACACTGGGTTCAAGAGATTTCCC

ACTGGGTTCAAGAGATTTCCC
ACTAAACCGTACACTGGGTTCAAGAGATTTCCC

AGAGATTTCCC
AGATTTCCC
ATTTCCC

.

p10
p11
p28
p17
p12
p1
p7
p19
p29
p31
p33
p27


