Today's Lecture

- Smith-Waterman special cases
- Word nucleation algorithms
 - BLAST
- Site models

The Edit Graph for a Pair of Sequences

- Find *imperfect internal repeats* by searching edit graph of sequence against itself
 - i.e. the same sequence labels columns and rows

above (& not including) the main diagonal:

- if include main diagonal, best path will be identity match to self
- complexity = $O(N^2)$ where N = sequence length.

Graph for finding imperfect internal repeats:

- Find *short tandem repeats* (e.g. microsatellites, minisatellites):
 - scan a *band* just above main diagonal.
 - Complexity = O(kN) where k is width of the band.
 - Manageable even for large *N*, if *k* small.

Graph for finding short tandem repeats:

ACACACACACACAC ACACACACACACACAC

- Other alignment tasks:
 - EST, or cDNA, to genomic sequence (exons)
 - protein to genomic.
- Can solve by variants of Smith-Waterman:
 - e.g. cDNA vs genomic:
 - set moderately large negative penalty for mismatch and for gap opening,
 - 0 for gap extension.
 - issue of proper placement of splice sites ...

Word Nucleation Algorithms

- Idea: find short (perfect or imperfect) word matches to 'nucleate' graph search
 - Each such match defines short *diagonal* path
 - Only search part of graph 'surrounding' this path
- BLAST: allow *imperfect* short (e.g. length 3) matches.
 - "Neighbors": set of 3-residue sequences having ≥ min score T against some 3-residue sequence of query
 - Scan database seqs until hit word in neighbor list
 - then do ungapped extension (along diagonal defined by word match)
 - 'significant' matches are those with scores \geq a threshold S
 - Ungapped matches are effective for detecting related proteins:
 - true protein alignments usually include substantial gap-free regions.

BLAST: Word Nucleating Alignment

 If find ≥ 2 significant ungapped matches in same seq, expand search to connecting region of matrix, allowing gaps:

Other Word Nucleation Programs

- FASTA:
 - look for clusters of short exact matches, on nearby diagonals;
 - when found, extend to gapped alignment
- cross_match:
 - do full search of *bands* around exact matches
- These all still time complexity O(MN)

 because # word matches proportional to MN
 but with much smaller constant.

- In database searches, most seqs unrelated to query
- suggests following strategy:
 - Initial rapid pass through database using fast algorithm
 - e.g. just looking for gap-free matches
 - to get (approximate) score,
 - identify sequences having scores above a threshold
 - use full Smith-Waterman on latter
 - for appropriate (low) threshold can get sensitivity nearly as good as full Smith-Waterman search.

• Important issue: statistical significance for database searches! We will return to this later (Karlin-Altschul theory).

Site Models

- Probability models for short sequences, such as:
 - splice sites
 - translation start sites
 - promoter elements
 - -protein "motifs"

- Assumptions:
 - different examples of site can be aligned *without gaps* (indels) such that tend to have same residues in same positions
 - drop equal freq assumption: allow *position-specific freqs*
 - retain *independence* assumption (for now)

- Applies to short segments (< 30 residues) where
 - precise residue spacing is structurally or functionally important, and
 - certain positions are highly conserved
- Examples:
 - DNA/RNA sequences binding a single protein or RNA molecule
 - Protein internal regions structurally constrained due to folding requirements; or
 - protein surface regions constrained because bind certain ligands

Construction of Site Models

- Collect examples of site
- Align (without gaps)
- Count occurrences of residues at each position
- Convert to frequencies

3' Splice Sites – C. elegans

Nucleotide Counts for													
8192 C. elegans 5' Splice Sites													
			5	'SS									
	Exon			Int	Intron								
A	3404	4644	1518	0	0	4836	5486	837	1632	2189	2278	2355	
С	1850	1224	583	0	14	118	588	237	801	771	889	986	
G	1562	912	4891	8192	0	1890	672	6164	589	962	1056	827	
Τ	1376	1412	1200	0	8178	1348	1446	954	5170	4270	3969	4024	
CONSEN	SUS X	x a	g	G	Т	a	a	g	t	t	W	t	
A	0.416	0.567	0.185	0.000	0.000	0.590	0.670	0.102	0.199	0.267	0.278	0.287	
С	0.226	0.149	0.071	0.000	0.002	0.014	0.072	0.029	0.098	0.094	0.109	0.120	
G	0.191	0.111	0.597	1.000	0.000	0.231	0.082	0.752	0.072	0.117	0.129	0.101	
Τ	0.168	0.172	0.146	0.000	0.998	0.165	0.177	0.116	0.631	0.521	0.484	0.491	

5' Splice Sites – C. elegans

Conserved Domain in RecR and Class I Topisomerases

RLAEEKITEVILATNPTVEGEATANYIAELC RecR RLODDOVTEVILATNPNIEGEATAMYISRLL RecM **RVDDVGITEVIIATDPNTEGEATATYLVRMV** RecR TrsI IFKENKIDEVIIATDPAREGENIAYKILNQL KQLAEKADHIYLATDLDREGEAIAWRLREVI TOP1 AELLKQANTIIVATDSDREGENIAWSIIHKA ORF1 KDALKDADELILATDEDREGKVISWHLLQLL TOP1 TOP1 TIFDKRVKTIILATDAAAEGEYIGRNILYRL TOP3 KREARNADYLMIWTDCDREGEYIGWEIWQEA KRFLHEASEIVHAGDPDREGQLLVDEVLDYL TOP3 RGYR RNLAVEADEVLIGTDPDTEGEKIAWDLYLAL

CONSENSUS xxxxxxxXU&uatDxxxEGexxxxXUxxxu

Consensus key:

Uppercase: all residues chemically similar

lowercase: most are

U,u: bulky aliphatic (I,L,V)

From RL Tatusov, SF Altschul, and EV Koonin, PNAS 91: 12091-12095

&: bulky hydrophobic (I,L,V,M,F,Y,W)

Probability Models for Sites (assuming independence!)

- For each position i, $1 \le i \le n$, let P_i be a prob dist'n on the alphabet of residues
 - e.g. constructed using counts at that position in a sample of sites.
 - $P_i(r)$ for each residue *r* is the probability that *r* occurs at position *i* in a sequence.
- Prob dist'n *P* on the space *S* of sequences of length *n* is defined by

$$P(s) = \prod_{1 \le i \le n} P_i(s_i)$$

where $s = s_1 s_2 \dots s_n$

Zero Probabilities

- If $P_i(r) = 0$ for some *i* and *r*, then P(s) = 0 for some sequences.
 - may or may not be desirable
- If due to failure to observe residue because of small sample size,
 - should perform "small-sample correction" to change $P_i(r)$ to a small non-zero value.
 - usually done by adding 'pseudocounts' to each value in the counts matrix;
 - e.g. add 1 to each cell (has justification in Bayesian statistics)
 - Particularly an issue with proteins, due to larger alphabet size.
- If reflects real biological constraints
 - then leave as 0.
 - e.g. requirement for G at position +1 (first intronic base) in 5'ss