Today’s Lecture

 Dinucleotides in human genome

 Hidden Markov Models

— Intro & Definitions
— Examples



Dinucleotide Fregs — H. sapiens Chr.21

Nucleotide Fregs:
A 10032226 0.297; T 9962530 0.295
G 6908202 0.204; C 6921020 0.205
Entropy: 1.976 bits

Observed Dinuc Fregs Expected (under independence)
A C G T A C G T

0.099 0.051 0.069 0.078 0.088 0.061 0.061 0.087

0.073 0.052 0.011 0.069 0.061 0.042 0.042 0.060

0.059 0.043 0.052 0.050 0.061 0.042 0.042 0.060

0.066 0.059 0.072 0.0098 0.087 0.060 0.060 0.087

HGQ QP

Observed / Expected
A C G T
.124 0.839 1.139 0.891
.204 1.243 0.260 1.139
.974 1.025 1.245 0.839
.752 0.976 1.204 1.125

H @ Qp
O oRr R



Dinucleotide Fregs — H. sapiens Chr.22

Nucleotide Fregs:
A 8745910 0.261; T 8720493 0.261
G 7999585 0.239; C 7997931 0.239
Entropy: 1.999 bits

Observed Dinuc Fregs Expected (under independence)
A C G T A C G T

0.077 0.051 0.075 0.058 0.068 0.062 0.062 0.068

0.077 0.071 0.016 0.075 0.062 0.057 0.057 0.062

0.061 0.057 0.071 0.051 0.062 0.057 0.057 0.062

0.047 0.061 0.077 0.076 0.068 0.062 0.062 0.068

HGQ QP

Observed / Expected
A C G T
.125 0.817 1.205 0.855
.233 1.236 0.285 1.206
.975 0.989 1.237 0.818
.684 0.977 1.233 1.124

H @ Qp
O oRr R



Failure of independence for ‘background’

Nucleotide Freqgs (C. elegans chr. 1):
A 4575132 (.321) ; C 2559048 (.179) ; G 2555862 (.179); T 4582688 (.321)

dinucleotide frequencies (5’ nuc to left, 3’ nuc at top - e.g. obs freq

of ApC is .047): (Note “symmetry”!)
Observed Expected (under independence)
A C G T A C G T
A 0.135 0.047 0.051 0.088 0.103 0.057 0.057 0.103
C 0.061 0.035 0.033 0.051 0.057 0.032 0.032 0.058
G 0.063 0.034 0.034 0.047 0.057 0.032 0.032 0.057
T 0.061 0.064 0.061 0.135 0.103 0.058 0.057 0.103

Observed / Expected

A C G T
1.314 0.818 0.885 0.853
1.055 1.075 1.031 0.886
1.106 1.062 1.074 0.818
0.597 1.105 1.056 1.313

HoQOp



Hidden Markov Models

 Probability models for sequences of observed
symbols, e.g.
— nucleotide or amino acid residues
— aligned pairs of residues

— aligned set of residues corresponding to leaves of an
underlying evolutionary tree

— angles in protein chain (structure modelling)
— sounds (speech recognition)



» Assume a sequence of “hidden’ (unobserved) states
underlies each observed symbol sequence

» Each state “emits” symbols (one symbol at a time)
 States may correspond to underlying “reality” we
are trying to infer, e.qg.
— unobserved biological feature:
* (positions within) site,
» coding region of gene
— rate of evolution
— protein structural element
— speech phoneme



observed symbols

7T1—> TCZ—’ TCB—’ TCI - TCn

unobserved states



observed symbols

G C A

A T
begin state unobserved states end state —
(we do not

Include)



Advantages of HMMs

 Flexible —gives reasonably good models In
wide variety of situations

« Computationally efficient

« Often interpretable:
— hidden states can correspond to biological features.
— can find most probable sequence of hidden states

= biological “parsing” of residue sequence.



HMMs: Formal Definition

» Alphabet B = {b} of observed symbols

« Set S = {k} of hidden states (usually k=0,1,2 ....m; O IS
reserved for “begin’ state, and sometimes also an “‘end”
state)

» (Markov chain property): prob of state occurring at given

position depends only on immediately preceding state, and

IS given by

transition probabilities (a,): a,, = Prob(next state is | | curr state is k)
28 = 1, for each k.

— Usually, many transition probabilities are set to 0.

— Model topology is the # of states, and allowed (i.e. a,, # 0)
transitions.

Sometimes omit begin state, in which case need initiation
probabilities (p,) for sequence starting in a given state
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observed symbols

A A T
e.(A) e, (G) e, (C e, (A) e, (T)
Omq 7mg T omg, Angmy T Tj+1
0 =Ty~ Ty Tg = =0

unobserved states
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 Prob that symbol occurs at given sequence
position depends only on hidden state at that
position, and Is given by

emission probabilities:

e (b) = Prob(observed symbol is b | curr state is k)
(begin and end states do not emit symbols)

 Note that

— there are no direct dependencies between observed
symbols in the sequence, however

— there are indirect dependencies implied by state
dependencies
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Where do the parameters come from?

Can either
— define parameter values a priori, or

— estimate them from training data (observed sequences
of the type to be modelled).

Usually one does a mixture of both —

— model topology is defined (some transitions set to 0),
but

— remaining parameters estimated
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Hidden Markov Model

observed symbols

A G C A T
e, (A) |€,(G) €,(C e € (A) o B (T)
By 8nyny myng 8rgry T Tj+1

unobserved states
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HMM Examples

e Site models:

— “states” correspond to positions (columns in the tables).
state I transitions only to state 1+1:
* q;+1= 1 forall;
- all other g;; are 0
— emission probabilities are position-specific frequencies:
values In frequency table columns
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Topology for Site HMM:

‘allowed’ transitions
(transits with non-zero prob — all are 1)
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HMM for C. elegans 3’ Splice Sites

3’ss

A

v

Intron| Exon

A 32760 3516 2313 4o o7 157 240 8192 0 3359 2401 2514
C 970 048 664 230 129 1109 6830 0 0 1277 1533 1847
G 593 575 5lo 144 39 595 12 0 8192 2539 1301 1567
T 3353 3453 4699 7336 7957 5731 1110 0 0 1017 2957 2264

CONSENSUS W W W T T t C A G r W W
o | A 0.400 0.429 0.282 0.058 0.008 0.092 0.029 1.000 0.000 0.410 0.293 0.307
SE C 0.118 0.079 0.081 0.029 0.016 0.135 0.834 0.000 0.000 0.156 0.187 0.225
g§ } G 0.072 0.070 0.063 0.018 0.005 0.073 0.001 0.000 1.000 0.310 0.159 0.191
£ S| T0.409 0.422 0.574 0.896 0.971 0.700 0.135 0.000 0.000 0.124 0.361 0.276

v
v

0—1— 2—3—4—5— 6—7

‘hidden’ states

oo

*—10—11—12
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— Can expand model to allow omission of nuc at some
positions by including other (downstream) transitions (or
via “silent states”)

— Can allow insertions by including additional states.
— transition probabilities no longer necessarily 1 or O
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Insertions & Deletions In Site Model

Insertion state

o
/N
= e e Sas San Say

other transitions correspond
to deletions
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Examples (cont’d) — 1-state HMMSs

* single state, emitting residues with specified fregs:
= ‘background’ model
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Examples (cont’d) — 2-state HMMSs

« If a,;; and a,, are small (close to 0), and
a,, and a,, are large (close to 1),

then get (nearly) periodic model with period 2; e.g.

— dinucleotide repeat in DNA, or

— (some) beta strands in proteins.

e If a,, and a,, large, and

a,, and a,, small,

then get models of alternating regions of different

compositions (specified by emission probabilities), e.qg.

— higher vs. lower G+C content regions (RNA genes in thermophilic
bacteria); or

— hydrophobic vs. hydrophilic regions of proteins (e.g.
transmembrane domains).
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A A T G C C T G G A T A

NN\VZrz=as

G+C-rich state

A+T-rich state
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2-State HMMSs

* Can find most probable state decomposition (‘Viterb1 path’)
consistent with observed sequence

» Advantages over linked-list dynamic programming method
(lecture 4) for finding high-scoring segments:

— That method assumes you know appropriate parameters to find
targeted regions; HMM method can estimate parameters.

— HMM (easily) finds multiple segments
— HMM can attach probabilities to alternative decompositions

— HMM generalization to > 2 types of segments Is easy — just allow
more states!

 Disadvantage:

— Markov assumption on state transitions implies geometric
distribution for lengths of regions -- may not be appropriate
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