Today's Lecture

- Dinucleotides in human genome
- Hidden Markov Models
 - Intro & Definitions
 - -Examples

Dinucleotide Freqs – H. sapiens Chr.21

Nucleotide Freqs:

A 10032226 0.297; T 9962530 0.295 G 6908202 0.204; C 6921020 0.205 Entropy: 1.976 bits

	Observed Dinuc Freqs			Expected	Expected (under independence)			
	A	С	G	Т	A	С	G	Т
Α	0.099	0.051	0.069	0.078	0.088	0.061	0.061	0.087
С	0.073	0.052	0.011	0.069	0.061	0.042	0.042	0.060
G	0.059	0.043	0.052	0.050	0.061	0.042	0.042	0.060
т	0.066	0.059	0.072	0.098	0.087	0.060	0.060	0.087

	Observed / Expected					
	A	С	G	Т		
A	1.124	0.839	1.139	0.891		
С	1.204	1.243	0.260	1.139		
G	0.974	1.025	1.245	0.839		
Т	0.752	0.976	1.204	1.125		

Dinucleotide Freqs – *H. sapiens* Chr.22

Nucleotide Freqs:

A	8745910	0.261; Т	8720493	0.261
G	7999585	0.239; C	7997931	0.239
Entr	opy: 1.99	9 bits		

	Observed Dinuc Freqs			Expected	Expected (under independence)			
	A	С	G	Т	A	С	G	Т
Α	0.077	0.051	0.075	0.058	0.068	0.062	0.062	0.068
С	0.077	0.071	0.016	0.075	0.062	0.057	0.057	0.062
G	0.061	0.057	0.071	0.051	0.062	0.057	0.057	0.062
т	0.047	0.061	0.077	0.076	0.068	0.062	0.062	0.068

	Observed / Expected					
	A	С	G	Т		
Α	1.125	0.817	1.205	0.855		
С	1.233	1.236	0.285	1.206		
G	0.975	0.989	1.237	0.818		
Т	0.684	0.977	1.233	1.124		

Failure of independence for 'background'

Nucleotide Freqs (*C. elegans* chr. 1): A 4575132 (.321) ; C 2559048 (.179) ; G 2555862 (.179); T 4582688 (.321)

dinucleotide frequencies (5' nuc to left, 3' nuc at top - e.g. obs freq
 of ApC is .047): (Note "symmetry"!)

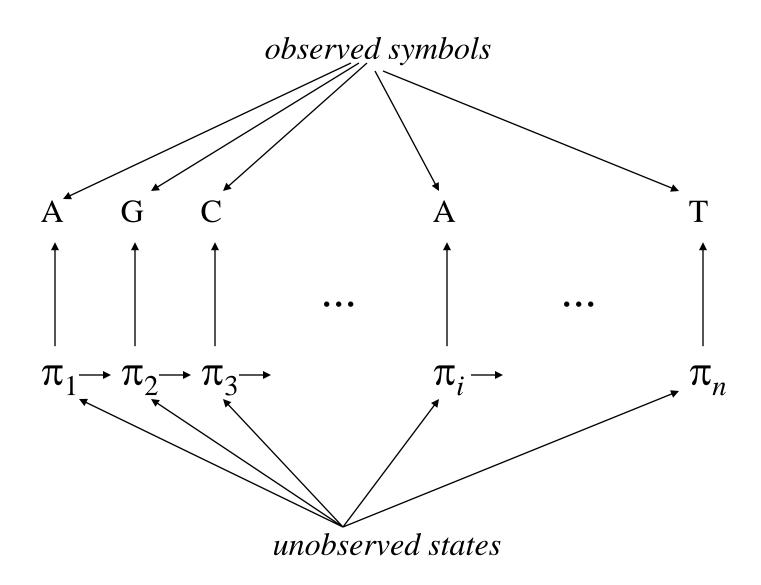
	Ob	oserved	t b		Expected (under independence)	
	A	С	G	Т	A C G T	
A	0.135	0.047	0.051	0.088	0.103 0.057 0.057 0.103	
С	0.061	0.035	0.033	0.051	0.057 0.032 0.032 0.058	
G	0.063	0.034	0.034	0.047	0.057 0.032 0.032 0.057	
Т	0.061	0.064	0.061	0.135	0.103 0.058 0.057 0.103	

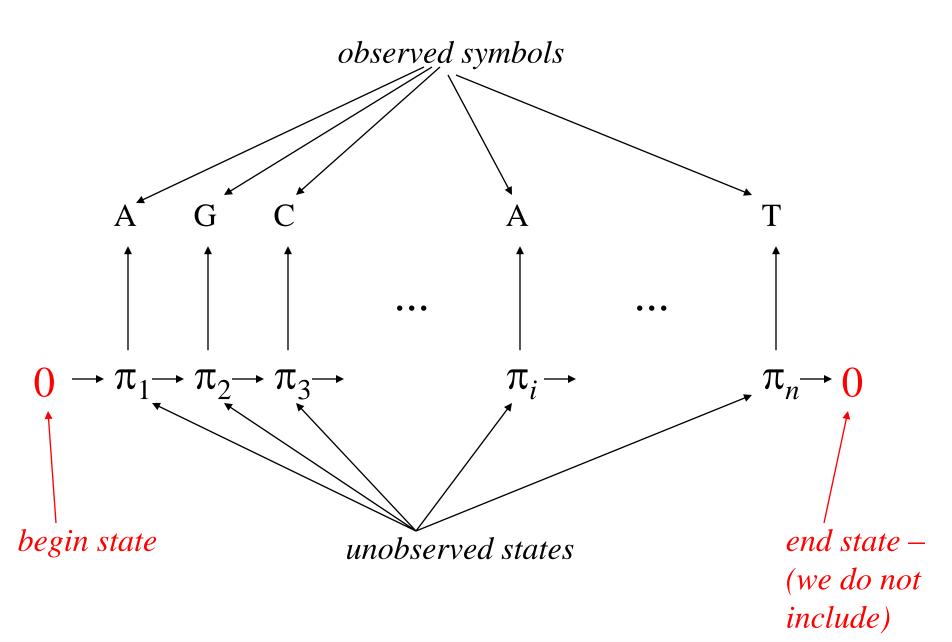
	Obsei	rved /	Expected		
	A	С	G	Т	
Α	1.314	0.818	0.885	0.853	
С	1.055	1.075	1.031	0.886	
G	1.106	1.062	1.074	0.818	
т	0.597	1.105	1.056	1.313	

Hidden Markov Models

- Probability models for sequences of *observed symbols*, e.g.
 - nucleotide or amino acid residues
 - aligned pairs of residues
 - aligned set of residues corresponding to leaves of an underlying evolutionary tree
 - angles in protein chain (structure modelling)
 - sounds (speech recognition)

- Assume a sequence of "*hidden*" (unobserved) *states* underlies each observed symbol sequence
- Each state "*emits*" symbols (one symbol at a time)
- States may correspond to underlying "reality" we are trying to infer, e.g.
 - unobserved biological feature:
 - (positions within) site,
 - coding region of gene
 - rate of evolution
 - protein structural element
 - speech phoneme





Advantages of HMMs

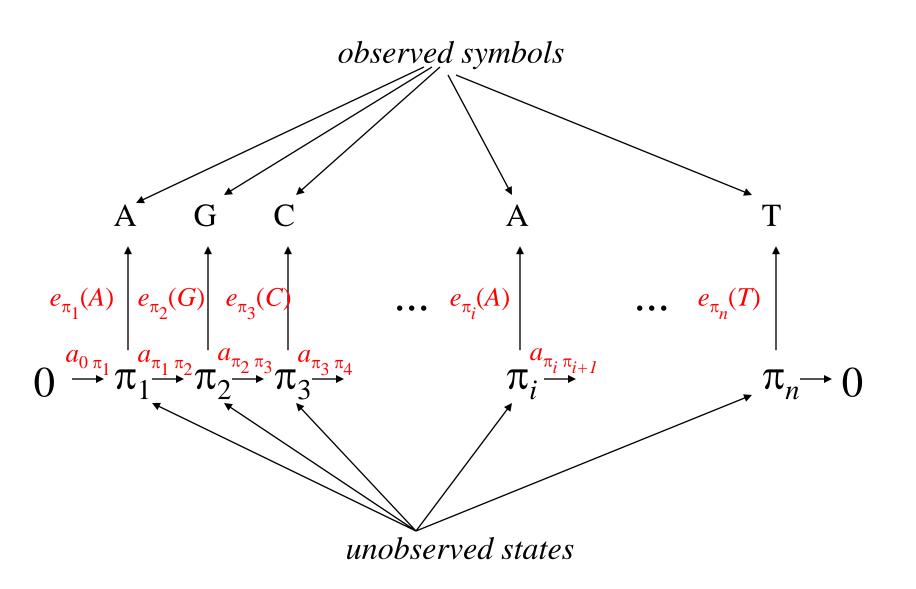
- Flexible –gives reasonably good models in wide variety of situations
- Computationally efficient
- Often interpretable:
 - hidden states can correspond to biological features.
 - can find most probable sequence of hidden states
 biological "parsing" of regidue sequence
 - = biological "parsing" of residue sequence.

HMMs: Formal Definition

- Alphabet **B** = {*b*} of *observed symbols*
- Set S = {k} of *hidden states* (usually k = 0,1, 2 ...,m; 0 is reserved for "begin" state, and sometimes also an "end" state)
- (Markov chain property): prob of state occurring at given position depends only on immediately preceding state, and is given by

transition probabilities (a_{kl}) : a_{kl} = Prob(next state is $l \mid$ curr state is k) $\sum_{l} a_{kl} = 1$, for each k.

- Usually, many transition probabilities are set to 0.
- Model *topology* is the # of states, and *allowed* (i.e. $a_{kl} \neq 0$) transitions.
- Sometimes omit begin state, in which case need *initiation probabilities* (p_k) for sequence starting in a given state



• Prob that symbol occurs at given sequence position depends only on hidden state at that position, and is given by

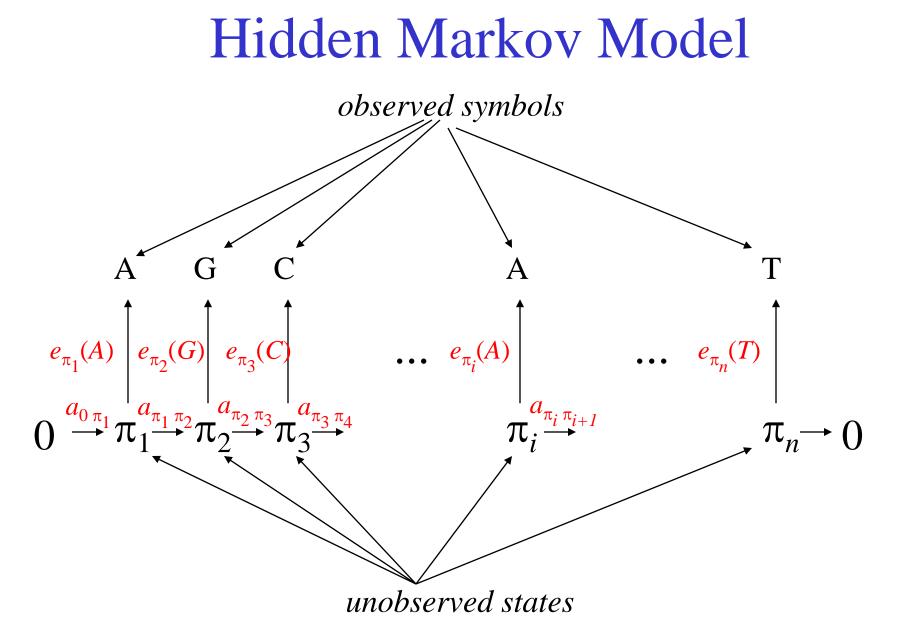
emission probabilities:

e_k(b) = Prob(observed symbol is *b* | curr state is *k*)
(begin and end states do not emit symbols)

- Note that
 - there are no *direct* dependencies between observed symbols in the sequence, however
 - there are *indirect* dependencies implied by state dependencies

Where do the parameters come from?

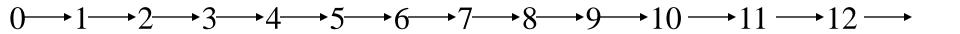
- Can either
 - *define* parameter values *a priori*, or
 - *estimate* them from training data (observed sequences of the type to be modelled).
- Usually one does a mixture of both
 - model topology is defined (some transitions set to 0),
 but
 - remaining parameters estimated



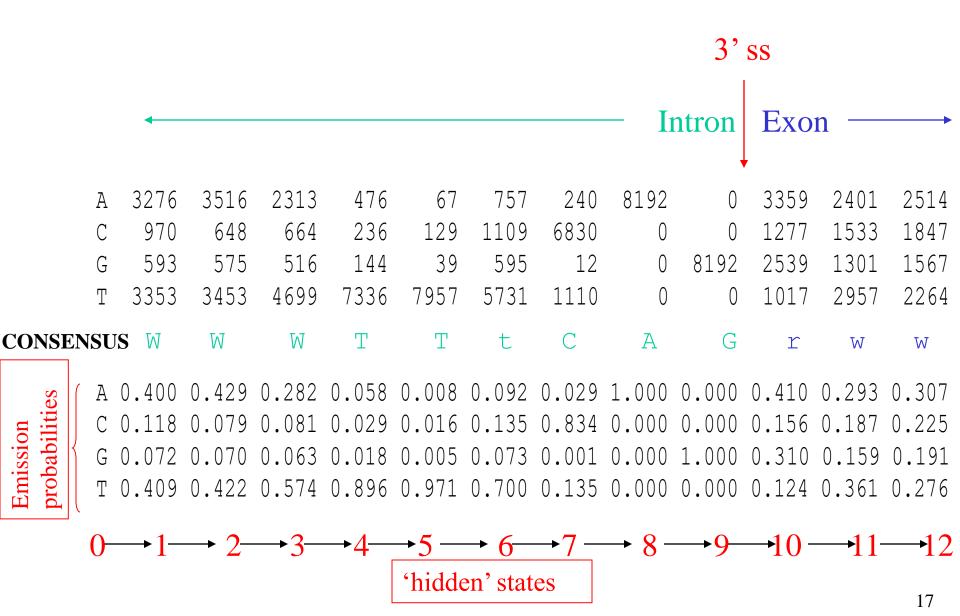
HMM Examples

- Site models:
 - "states" correspond to positions (columns in the tables).
 state *i* transitions only to state *i*+1:
 - $a_{i,i+1} = 1$ for all *i*;
 - all other a_{ij} are 0
 - emission probabilities are position-specific frequencies: values in frequency table columns

Topology for Site HMM: 'allowed' transitions (transits with non-zero prob – all are 1)



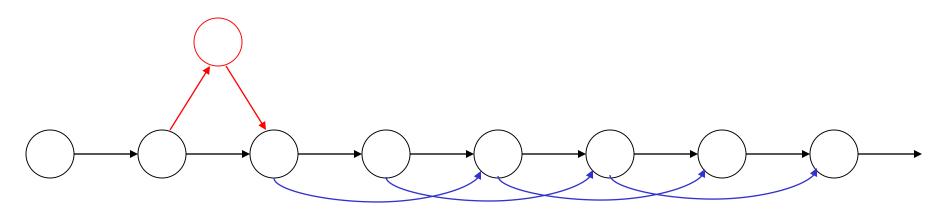
HMM for C. elegans 3' Splice Sites



- Can expand model to allow omission of nuc at some positions by including other (downstream) transitions (or via "silent states")
- Can allow insertions by including additional states.
- transition probabilities no longer necessarily 1 or 0

Insertions & Deletions in Site Model

insertion state



other transitions correspond to deletions

Examples (cont'd) – 1-state HMMs

single state, emitting residues with specified freqs:
 = 'background' model

Examples (cont'd) – 2-state HMMs

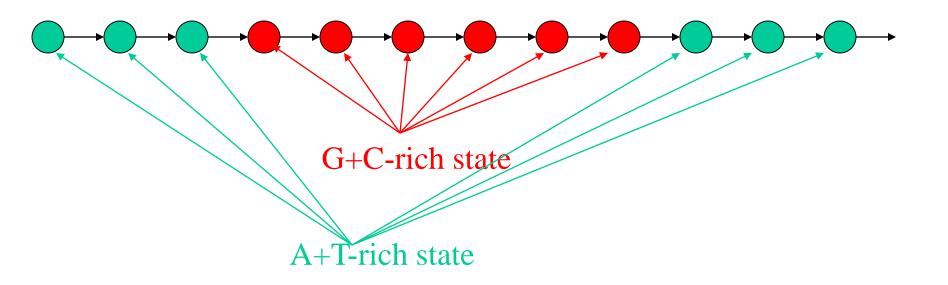
- if a₁₁ and a₂₂ are small (close to 0), and
 a₁₂ and a₂₁ are large (close to 1),
 then get (nearly) periodic model with period 2; e.g.
 - dinucleotide repeat in DNA, or
 - (some) beta strands in proteins.
- if a_{11} and a_{22} large, and

 a_{12} and a_{21} small,

then get models of alternating regions of different compositions (specified by emission probabilities), e.g.

- higher vs. lower G+C content regions (RNA genes in thermophilic bacteria); or
- hydrophobic vs. hydrophilic regions of proteins (e.g. transmembrane domains).

A A T G C C T G G A T A



2-state HMMs

- Can find most probable state decomposition ('Viterbi path') consistent with observed sequence
- Advantages over linked-list dynamic programming method (lecture 4) for finding high-scoring segments:
 - That method assumes you *know* appropriate parameters to find targeted regions; HMM method can *estimate* parameters.
 - HMM (easily) finds multiple segments
 - HMM can attach *probabilities* to alternative decompositions
 - HMM generalization to > 2 *types* of segments is easy just allow more states!
- Disadvantage:
 - Markov assumption on state transitions implies geometric distribution for lengths of regions -- may not be appropriate