
Today’s Lecture 

• Dinucleotides in human genome

• Hidden Markov Models

– Intro & Definitions

– Examples
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Dinucleotide Freqs – H. sapiens Chr.21
Nucleotide Freqs:

A 10032226  0.297; T  9962530  0.295

G  6908202  0.204; C  6921020  0.205

Entropy: 1.976 bits

Observed Dinuc Freqs        Expected (under independence)

A     C     G     T            A     C     G     T

A  0.099 0.051 0.069 0.078        0.088 0.061 0.061 0.087

C  0.073 0.052 0.011 0.069        0.061 0.042 0.042 0.060

G  0.059 0.043 0.052 0.050        0.061 0.042 0.042 0.060

T  0.066 0.059 0.072 0.098        0.087 0.060 0.060 0.087

Observed / Expected

A     C     G     T

A  1.124 0.839 1.139 0.891

C  1.204 1.243 0.260 1.139

G  0.974 1.025 1.245 0.839

T  0.752 0.976 1.204 1.125
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Dinucleotide Freqs – H. sapiens Chr.22
Nucleotide Freqs:

A  8745910  0.261; T  8720493  0.261

G  7999585  0.239; C  7997931  0.239

Entropy: 1.999 bits

Observed Dinuc Freqs        Expected (under independence)

A     C     G     T            A     C     G     T

A  0.077 0.051 0.075 0.058        0.068 0.062 0.062 0.068

C  0.077 0.071 0.016 0.075        0.062 0.057 0.057 0.062

G  0.061 0.057 0.071 0.051        0.062 0.057 0.057 0.062

T  0.047 0.061 0.077 0.076        0.068 0.062 0.062 0.068

Observed / Expected

A     C     G     T

A  1.125 0.817 1.205 0.855

C  1.233 1.236 0.285 1.206

G  0.975 0.989 1.237 0.818

T  0.684 0.977 1.233 1.124
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Failure of independence for ‘background’

Nucleotide Freqs (C. elegans chr. 1):

A 4575132 (.321) ; C 2559048 (.179) ; G 2555862 (.179); T 4582688 (.321)

dinucleotide frequencies (5’ nuc to left, 3’ nuc at top – e.g. obs freq 
of ApC is .047):    (Note “symmetry”!)

Observed              Expected (under independence)
A     C     G     T         A     C     G    T

A  0.135 0.047 0.051 0.088     0.103 0.057 0.057 0.103

C  0.061 0.035 0.033 0.051     0.057 0.032 0.032 0.058

G  0.063 0.034 0.034 0.047     0.057 0.032 0.032 0.057

T  0.061 0.064 0.061 0.135     0.103 0.058 0.057 0.103

Observed / Expected 

A     C     G     T 

A  1.314 0.818 0.885 0.853

C  1.055 1.075 1.031 0.886

G  1.106 1.062 1.074 0.818

T  0.597 1.105 1.056 1.313
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Hidden Markov Models

• Probability models for sequences of observed

symbols, e.g. 

– nucleotide or amino acid residues

– aligned pairs of residues

– aligned set of residues corresponding to leaves of an 

underlying evolutionary tree

– angles in protein chain (structure modelling)

– sounds (speech recognition) 
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• Assume a sequence of “hidden” (unobserved) states
underlies each observed symbol sequence 

• Each state “emits” symbols (one symbol at a time)

• States may correspond to underlying “reality” we 
are trying to infer, e.g. 

– unobserved biological feature:

• (positions within) site, 

• coding region of gene

– rate of evolution

– protein structural element

– speech phoneme
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Advantages of HMMs 

• Flexible –gives reasonably good models in 

wide variety of situations 

• Computationally efficient

• Often interpretable: 

– hidden states can correspond to biological features. 

– can find most probable sequence of hidden states

= biological “parsing” of residue sequence.
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HMMs: Formal Definition

• Alphabet B = {b} of observed symbols

• Set S = {k} of hidden states (usually k = 0,1, 2 ...,m; 0 is 
reserved for “begin” state, and sometimes also an “end” 
state)

• (Markov chain property): prob of state occurring at given 
position depends only on immediately preceding state, and 
is given by

transition probabilities (akl): akl = Prob(next state is l | curr state is k)

lakl = 1, for each k.

– Usually, many transition probabilities are set to 0. 

– Model topology is the # of states, and allowed (i.e. akl  0) 

transitions. 

Sometimes omit begin state, in which case need initiation 
probabilities (pk) for sequence starting in a given state
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• Prob that symbol occurs at given sequence 
position depends only on hidden state at that 
position, and is given by 

emission probabilities: 

ek(b) = Prob(observed symbol is b | curr state is k)

(begin and end states do not emit symbols)

• Note that 

– there are no direct dependencies between observed 
symbols in the sequence, however

– there are indirect dependencies implied by state 
dependencies
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• Can either

– define parameter values a priori, or 

– estimate them from training data (observed sequences 

of the type to be modelled).

• Usually one does a mixture of both –

– model topology is defined (some transitions set to 0), 

but

– remaining parameters estimated

Where do the parameters come from?
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HMM Examples

• Site models: 

– “states” correspond to positions (columns in the tables). 

state i transitions only to state i+1: 

• ai,i+1= 1 for all i; 

• all other aij are 0

– emission probabilities are position-specific frequencies: 

values in frequency table columns
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Topology for Site HMM: 

‘allowed’ transitions 

(transits with non-zero prob – all are 1)

1 2 3 4 5 6 7 8 9 10 11 120
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HMM for C. elegans 3’ Splice Sites  

 

A  3276  3516  2313   476    67   757   240  8192     0  3359  2401  2514  

C   970   648   664   236   129  1109  6830     0     0  1277  1533  1847  

G   593   575   516   144    39   595    12     0  8192  2539  1301  1567  

T  3353  3453  4699  7336  7957  5731  1110     0     0  1017  2957  2264  

 

 

A 0.400 0.429 0.282 0.058 0.008 0.092 0.029 1.000 0.000 0.410 0.293 0.307  

C 0.118 0.079 0.081 0.029 0.016 0.135 0.834 0.000 0.000 0.156 0.187 0.225  

G 0.072 0.070 0.063 0.018 0.005 0.073 0.001 0.000 1.000 0.310 0.159 0.191  

T 0.409 0.422 0.574 0.896 0.971 0.700 0.135 0.000 0.000 0.124 0.361 0.276  
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– Can expand model to allow omission of nuc at some 

positions by including other (downstream) transitions (or 

via “silent states”)

– Can allow insertions by including additional states.

– transition probabilities no longer necessarily 1 or 0
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Insertions & Deletions in Site Model

insertion state

other transitions correspond 

to deletions
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Examples (cont’d) – 1-state HMMs

• single state, emitting residues with specified freqs:

= ‘background’ model
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Examples (cont’d) – 2-state HMMs

• if a11 and a22 are small (close to 0), and 

a12 and a21 are large (close to 1), 

then get (nearly) periodic model with period 2; e.g. 
– dinucleotide repeat in DNA, or 

– (some) beta strands in proteins. 

• if  a11 and a22 large, and 

a12 and a21 small, 

then get models of alternating regions of different 
compositions (specified by emission probabilities), e.g.
– higher vs. lower G+C content regions (RNA genes in thermophilic 

bacteria); or 

– hydrophobic vs. hydrophilic regions of proteins (e.g. 
transmembrane domains).
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2-state HMMs
• Can find most probable state decomposition (‘Viterbi path’) 

consistent with observed sequence

• Advantages over linked-list dynamic programming method 
(lecture 4) for finding high-scoring segments: 

– That method assumes you know appropriate parameters to find 
targeted regions; HMM method can estimate parameters.

– HMM (easily) finds multiple segments 

– HMM can attach probabilities to alternative decompositions

– HMM generalization to > 2 types of segments is easy – just allow 
more states!

• Disadvantage:

– Markov assumption on state transitions implies geometric 
distribution for lengths of regions -- may not be appropriate


