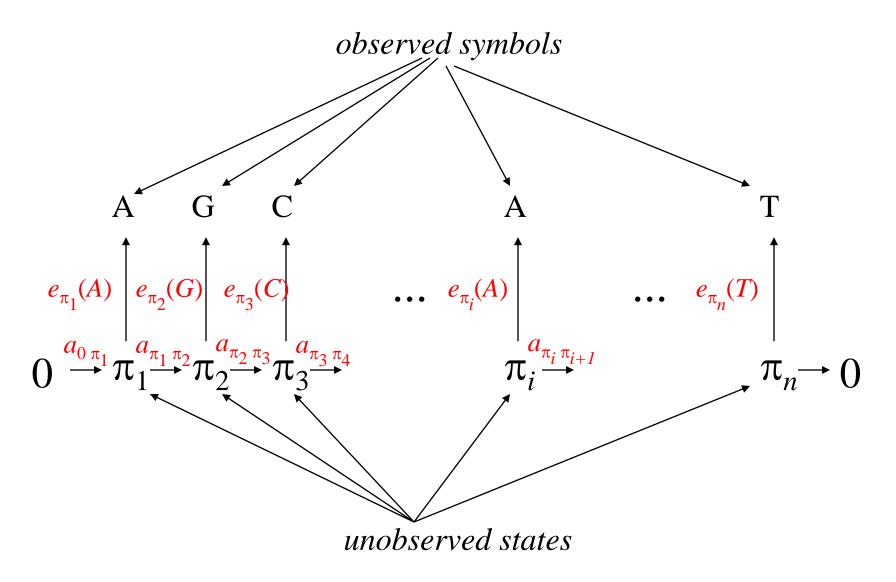
Today's Lecture -- HMMs

- Probability calculations
 - -WDAG
 - Viterbi algorithm
- Parameter estimation
 - Viterbi training
- Forward algorithm

Hidden Markov Model



HMM Probabilities of Sequences

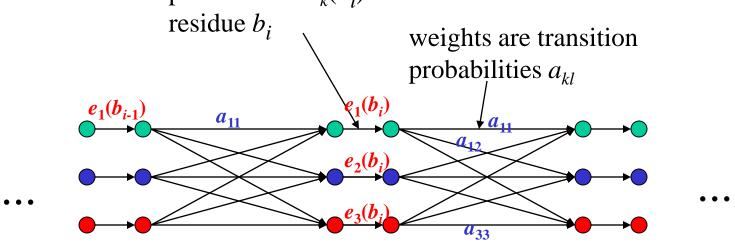
- Prob of sequence of states $\pi_1 \pi_2 \pi_3 \dots \pi_n$ is $a_{0\pi_1} a_{\pi_1 \pi_2} a_{\pi_2 \pi_3} a_{\pi_3 \pi_4} \dots a_{\pi_{n-1} \pi_n}$.
- Prob of seq of observed symbols $b_1b_2b_3 \dots b_n$, conditional on state sequence is $e_{\pi_1}(b_1)e_{\pi_2}(b_2) \ e_{\pi_3}(b_3) \dots e_{\pi_n}(b_n)$
- Joint probability = $a_{0\pi_1} \prod_{i=1}^n a_{\pi_i \pi_{i+1}} e_{\pi_i}(b_i)$ (define $a_{\pi_n \pi_{n+1}}$ to be 1)
- (Unconditional) prob of observed sequence
 - = sum (of joint probs) over all possible state paths
 - not practical to compute directly, by 'brute force'! We will use dynamic programming.

Computing HMM Probabilities

- WDAG structure for sequence HMMs:
 - for i^{th} position in seq (i = 1, ... n), have 2 nodes for each state:
 - total # nodes = 2ns + 1, where n = seq length, s = # states
 - Pair of nodes for a given state at ith position is connected by an *emission* edge
 - Weight is the emission prob for i^{th} observed residue.
 - Can omit node pair if emission prob = 0.
 - Have *transition* edges connecting (right-hand) state
 nodes at position *i* with (left-hand) state nodes at position
 i+1
 - Weights are transition probs
 - Can omit edges with transition prob = 0.

WDAG for 3-state HMM, length *n* sequence

weights are emission probabilities $e_k(b_i)$ for i^{th} residue b_i :

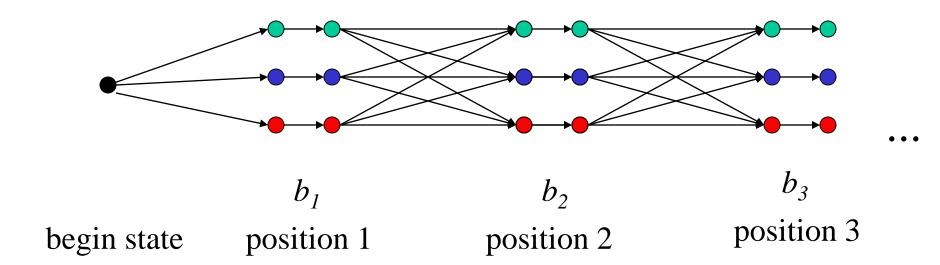


 b_{i-1} position i-1

 b_i position i

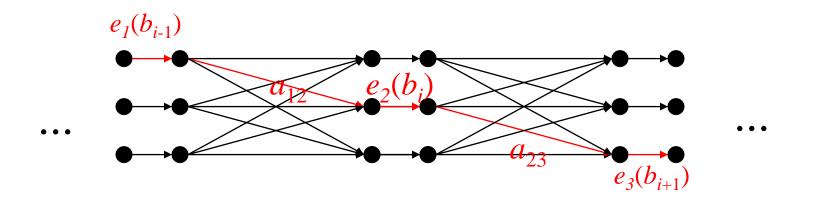
 b_{i+1} position i+1

Beginning of Graph



- *Paths* through graph from begin node to end node correspond to *sequences of states*
- **Product weight** along path
 - = *joint probability* of state sequence & observed symbol sequence
- Highest-weight path = highest probability state sequence
- Sum of (product) path weights, over all paths,
 - = probability of observed sequence
- Sum of (product) path weights over
 - all paths going through a particular node, or
 - all paths that include a particular edge,
 - divided by prob of observed sequence,
 - = posterior probability of that edge or node

Path Weights



position *i*-1

position i

position i+1

- By general results on WDAGs, can use dynamic programming to find highest weight path:
 - = "Viterbi algorithm" to find highest probability path (most probable "parse")
 - in this case can use log probabilities & sum weights
 - (N.B. paths are constrained to begin at the begin node!)

The Viterbi path is the most probable parse!

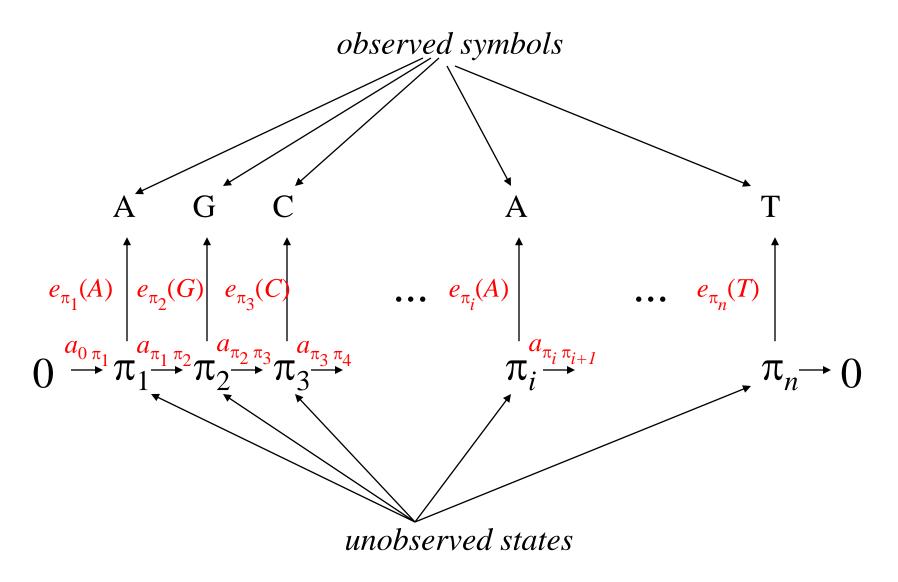
Complexity

- = O(|V|+|E|), i.e. total # nodes and edges.
- # nodes = 2ns + 2
 - where n = sequence length,
 - -s = # states.
- # edges = $(n-1)s^2 + ns + 2s$
- So overall complexity is $O(ns^2)$
 - (actually s² can be reduced to # 'allowed' transitions between states depends on model topology).

HMM Parameter Estimation

- Suppose parameter values (transition & emission probs) unknown
- Need to estimate from set of training sequences
- *Maximum likelihood* (ML) estimation (= choice of param vals to maximize prob of data) is preferred
 - optimality properties of ML estimates discussed in Ewens & Grant

Hidden Markov Model



Parameter estimation when state sequence is *known*

- When underlying state sequence for each training sequence is *known*,
 - e.g.: site model

then ML estimates are given by:

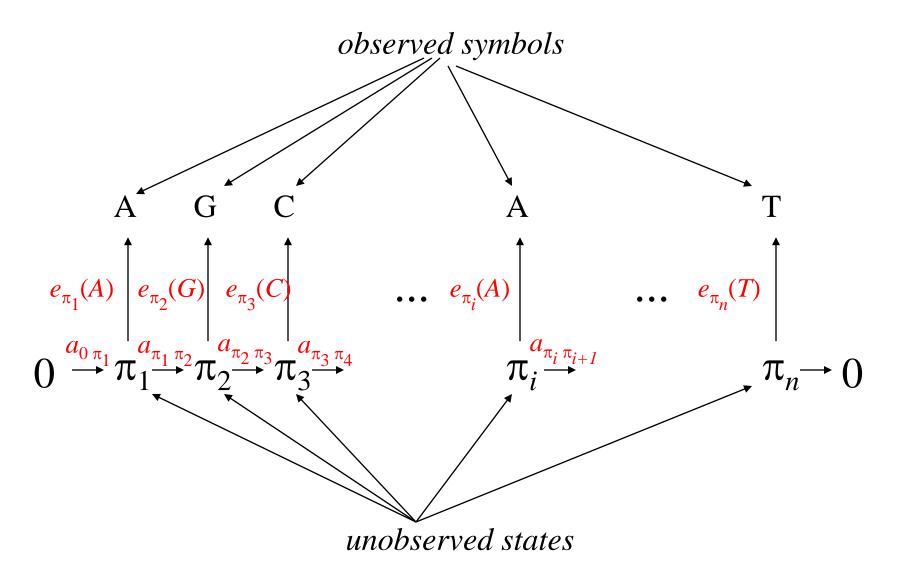
- emission probabilities:
 - $e_k(b)^{\wedge} = (\# \text{ times symbol } b \text{ emitted by state } k) / (\# \text{ times state } k \text{ occurs})$.
- transition probabilities:
 - $a_{kl} = (\text{# times state } k \text{ followed by state } l) / (\text{# times state } k \text{ occurs})$
- in denominator above, omit occurrence at last position of sequence (for transition probabilities)
 - But include it for emission probs
- can include pseudocounts, to incorporate prior expectations/avoid small sample overfitting (Bayesian justification)

Parameter estimation when state sequence *unknown*

Viterbi training

- 1. choose starting parameter values
- 2. find highest weight paths (Viterbi) for each sequence
- 3. estimate new emission and transition probs as above, assuming Viterbi state sequence is true
- 4. iterate steps 2 and 3 until convergence
 - not guaranteed to occur but nearly always does
- 5. does *not* necessarily give ML estimates, but often are reasonably good

Hidden Markov Model



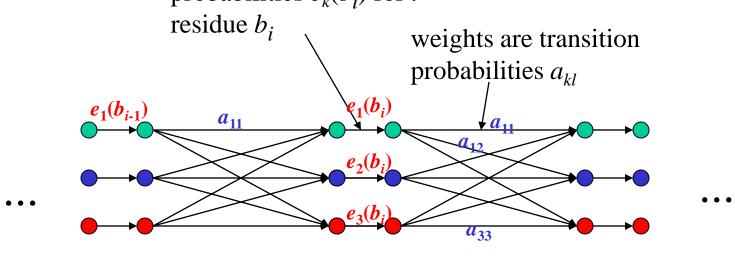
More algorithms

- Can also use dynamic programming to find
 - sum of all product path weights
 - = "forward algorithm" for probability of observed sequence
 - sum of all product path weights through particular node or particular edge
 - = "forward/backward algorithm" to find posterior probabilities
- Now must use product weights and non-logtransformed probabilities
 - because need to add probabilities

- In each case, compute successively for each node (by increasing depth: left to right)
 - the sum of the weights of all paths ending at that node
 - N.B. paths are constrained to begin at the begin node!
- In forward/backward algorithm,
 - work through all nodes a second time, in opposite direction
 - i.e. in reverse graph constraining paths to start in rightmost column of nodes

WDAG for 3-state HMM, length *n* sequence

weights are emission probabilities $e_k(b_i)$ for i^{th} residue b_i



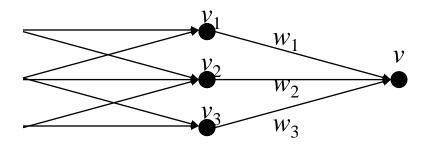
 b_{i-1} position i-1

 b_i position i

 b_{i+1} position i+1

For each vertex v, let $f(v) = \sum_{\text{paths } p \text{ ending at } v} \text{weight}(p)$, where weight(p) = product of edge weights in p. Only consider paths starting at 'begin' node.

Compute f(v) by dynam. prog: $f(v) = \sum_i w_i f(v_i)$, where v_i ranges over the parents of v, and w_i = weight of the edge from v_i to v.



Similarly for $b(v) = \sum_{p \text{ beginning at } v} \text{weight}(p)$

The paths *beginning* at *v* are the ones *ending* at *v* in the *reverse* (or *inverted*) graph