
Today’s Lecture -- HMMs

• Probability calculations

– WDAG

– Viterbi algorithm

• Parameter estimation

– Viterbi training

• Forward algorithm

1

2

A

1

G

2

C

3

A

i

T

n

... ...

observed symbols

unobserved states

0 0
a1 2

e1
(A)

a2 3

e2
(G) e3

(C) ei
(A) en

(T)

ai i+1
a3 4

a0 1

Hidden Markov Model

3

HMM Probabilities of Sequences

• Prob of sequence of states 123 ... n is
a01

a12
a23

a34
... an-1n

.

• Prob of seq of observed symbols b1b2b3 ... bn,

conditional on state sequence is
e1

(b1)e2
(b2) e3

(b3) ... en
(bn)

• Joint probability = a01
n

i=1 aii+1
ei

(bi)

(define ann+1
to be 1)

• (Unconditional) prob of observed sequence
= sum (of joint probs) over all possible state paths

– not practical to compute directly, by ‘brute force’! We will use
dynamic programming.

4

Computing HMM Probabilities
• WDAG structure for sequence HMMs:

– for ith position in seq (i = 1, ... n), have 2 nodes for each
state:

• total # nodes = 2ns + 1, where n = seq length, s = # states

– Pair of nodes for a given state at ith position is connected
by an emission edge

• Weight is the emission prob for ith observed residue.

• Can omit node pair if emission prob = 0.

– Have transition edges connecting (right-hand) state
nodes at position i with (left-hand) state nodes at position
i+1

• Weights are transition probs

• Can omit edges with transition prob = 0.

5

WDAG for 3-state HMM,

length n sequence

position i position i+1position i-1

weights are emission

probabilities ek(bi) for ith

residue bi weights are transition

probabilities akl

......

bi-1
bi bi+1

e1(bi)

e2(bi)

e3(bi)

a11
a12

a33

a11
e1(bi-1)

6

Beginning of Graph

position 2 position 3position 1

...

b1 b2
b3

begin state

7

• Paths through graph from begin node to end node
correspond to sequences of states

• Product weight along path

= joint probability of state sequence & observed symbol
sequence

• Highest-weight path = highest probability state sequence

• Sum of (product) path weights, over all paths,

= probability of observed sequence

• Sum of (product) path weights over
– all paths going through a particular node, or

– all paths that include a particular edge,

divided by prob of observed sequence,

= posterior probability of that edge or node

8

position i position i+1position i-1

......

Path Weights

e1(bi-1)

a12

a23

e2(bi)

e3(bi+1)

9

• By general results on WDAGs, can use dynamic

programming to find highest weight path:

= “Viterbi algorithm” to find highest probability path

(most probable “parse”)

– in this case can use log probabilities & sum weights

– (N.B. paths are constrained to begin at the begin

node!)

The Viterbi path is

the most probable parse!

10

11

Complexity

• = O(|V|+|E|), i.e. total # nodes and edges.

• # nodes = 2ns + 2
– where n = sequence length,

– s = # states.

• # edges = (n – 1)s2 + ns + 2s

• So overall complexity is O(ns2)
– (actually s2 can be reduced to # ‘allowed’

transitions between states – depends on model
topology).

12

HMM Parameter Estimation

• Suppose parameter values (transition & emission

probs) unknown

• Need to estimate from set of training sequences

• Maximum likelihood (ML) estimation (= choice of

param vals to maximize prob of data) is preferred

– optimality properties of ML estimates discussed in

Ewens & Grant

13

A

1

G

2

C

3

A

i

T

n

... ...

observed symbols

unobserved states

0 0
a1 2

e1
(A)

a2 3

e2
(G) e3

(C) ei
(A) en

(T)

ai i+1
a3 4

a0 1

Hidden Markov Model

14

Parameter estimation when

state sequence is known
• When underlying state sequence for each training sequence

is known,

– e.g.: site model

then ML estimates are given by:

– emission probabilities:

ek(b)^ = (# times symbol b emitted by state k) / (# times state k occurs) .

– transition probabilities:

akl ^ = (# times state k followed by state l) / (# times state k occurs)

– in denominator above, omit occurrence at last position of sequence
(for transition probabilities)

• But include it for emission probs

– can include pseudocounts, to incorporate prior expectations/avoid
small sample overfitting (Bayesian justification)

15

Parameter estimation when

state sequence unknown
• Viterbi training

1. choose starting parameter values

2. find highest weight paths (Viterbi) for each sequence

3. estimate new emission and transition probs as above,

assuming Viterbi state sequence is true

4. iterate steps 2 and 3 until convergence

– not guaranteed to occur – but nearly always does

5. does not necessarily give ML estimates, but often are

reasonably good

16

A

1

G

2

C

3

A

i

T

n

... ...

observed symbols

unobserved states

0 0
a1 2

e1
(A)

a2 3

e2
(G) e3

(C) ei
(A) en

(T)

ai i+1
a3 4

a0 1

Hidden Markov Model

17

More algorithms

• Can also use dynamic programming to find

– sum of all product path weights

= “forward algorithm” for probability of observed sequence

– sum of all product path weights through particular

node or particular edge

= “forward/backward algorithm” to find posterior

probabilities

• Now must use product weights and non-log-

transformed probabilities

– because need to add probabilities

18

• In each case, compute successively for each

node (by increasing depth: left to right)

– the sum of the weights of all paths ending at that

node

– N.B. paths are constrained to begin at the begin

node!

• In forward/backward algorithm,

– work through all nodes a second time, in opposite

direction

• i.e. in reverse graph – constraining paths to start in

rightmost column of nodes

19

WDAG for 3-state HMM,

length n sequence

position i position i+1position i-1

weights are emission

probabilities ek(bi) for ith

residue bi weights are transition

probabilities akl

......

bi-1
bi bi+1

e1(bi)

e2(bi)

e3(bi)

a11
a12

a33

a11
e1(bi-1)

20

w3

w1

w2

v1

v2

v3

v

For each vertex v, let f(v) = paths p ending at vweight(p), where

weight(p) = product of edge weights in p. Only consider paths

starting at ‘begin’ node.

Compute f(v) by dynam. prog: f(v) = iwi f(vi), where

vi ranges over the parents of v, and

wi = weight of the edge from vi to v.

Similarly for b(v) = p beginning at vweight(p)

The paths beginning at v are the ones ending at v in the reverse (or inverted)

graph

