
Today’s Lecture

• Forward & forward/backward algorithms

• Baum-Welch training

1

2

More algorithms

• Can also use dynamic programming to find

– sum of all product path weights

= “forward algorithm” for probability of observed sequence

– sum of all product path weights through particular

node or particular edge

= “forward/backward algorithm” to find posterior

probabilities

• Now must use product weights and non-log-

transformed probabilities

– because need to add probabilities

3

• In each case, compute successively for each

node (by increasing depth: left to right)

– the sum of the weights of all paths ending at that

node

– N.B. paths are constrained to begin at the begin

node!

• In forward/backward algorithm,

– work through all nodes a second time, in opposite

direction

• i.e. in reverse graph – constraining paths to start in

rightmost column of nodes

4

WDAG for 3-state HMM,

length n sequence

position i position i+1position i-1

weights are emission

probabilities ek(bi) for ith

residue bi weights are transition

probabilities akl

......

bi-1
bi bi+1

e1(bi)

e2(bi)

e3(bi)

a11
a12

a33

a11
e1(bi-1)

5

w3

w1

w2

v1

v2

v3

v

For each vertex v, let f(v) = paths p ending at vweight(p), where

weight(p) = product of edge weights in p. Only consider paths

starting at ‘begin’ node.

Compute f(v) by dynam. prog: f(v) = iwi f(vi), where

vi ranges over the parents of v, and

wi = weight of the edge from vi to v.

Similarly for b(v) = p beginning at vweight(p)

The paths beginning at v are the ones ending at v in the reverse (or inverted)

graph

6

wv’ v

f(v)b(v) = sum of the path weights of all paths through v.

f(v’)
f(v) b(v)

f(v’)wb(v) = sum of the path weights of all paths through the

edge (v’,v)

7

• Numerical issues: multiplying many small values
can cause underflow. Remedies:

– Scale weights to be close to 1 (affects all paths by same
constant factor – which can be multiplied back later); or

– (where possible) use log weights, so can add instead of
multiplying.

– see Rabiner & Tobias Mann links on web page
• & will discuss further in discussion section

• Work through graph in forward direction:

– compute and store f(v)

• Then work through graph in backward direction:

– compute b(v)

– compute f(v) b(v) and f(v)wb(v) as above, store in

appropriate cumulative sums

– only need to store b(v) until have computed b’s at

next position

• Posterior probability of being in state s at

position i is f(v) b(v) / total sequence prob

– where v is the corresponding graph node
8

Forward/backward algorithm

9

• Special case of EM (‘expectation-maximization’)

algorithm

• like Viterbi training, but

– uses all paths, each weighted by its probability

rather than just highest probability path.

• sometimes give significantly better results than

Viterbi

– e.g. for PFAM

Baum-Welch training

10

– An edge in the WDAG contributes fractional (or

weighted) counts given by its posterior

probability:

– (*): (all paths p through edge e weight(p)) / (all paths p weight(p))

(Fractional counts are computed using forward-

backward algorithm)

Implementing Baum-Welch

11

wv’ v

f(v)b(v) = sum of the path weights of all paths through v.

f(v’)
f(v) b(v)

f(v’)wb(v) = sum of the path weights of all paths through the

edge (v’,v)

12

– Compute new param estimates

• ek(b)^ = (frac. # times symbol b emitted by state k) /

(frac. # times state k occurs)

• akl ^ = (frac. # times state k followed by state l) / (frac.

times state k occurs)
– (In denom,, omit frac counts at last position of sequence)

where “frac. # times” is given by (*) for

appropriate edge type (emission or transition)

13

– New Baum-Welch parameter estimates have

higher likelihood

• general property of EM algorithm

• not true in general for Viterbi training

– Iterate: get series of estimates converging to a

local maximum on likelihood surface

14

Search of parameter space

• ML estimates correspond by definition to global

maximum;

• but there may be many local maxima, and EM or

Viterbi search can get “trapped” in one

• remedies:

– Consider multiple starts (multiple choices for starting

parameters)

– use “reasonable values” to start search (e.g. unlikely

transitions should be given small initial probabilities)

15

– Allow search to “jump” out of local maxima:

• Add “noise” to counts at each iteration; gradually reduce the

amount of noise

• Use Viterbi-like training, but

– sample paths probabilistically

» (in retracing Viterbi path, choose edge at random according to its

prob, rather than taking highest prob parent);

– use “temperature” T to adjust probabilities;

» initially with large T making all probs approximately equal;

» then gradually reduce T

– similar to Gibbs sampler

16

Probabilistic Viterbi Backtracking

choose parent vi with probability wi f(vi) / f(v). For large T,

all parents almost equally likely to be chosen; for small T,

strongly favor largest (max) wi f(vi)

w4

w1

w2
w3

v1

v2

v3

v4

v

reset all weights w to w1/T. For large T (>> 1), this makes

distinct w’s relatively close; for small T (<< 1), relatively

far apart

given choice of paths, re-estimate weights; iterate

