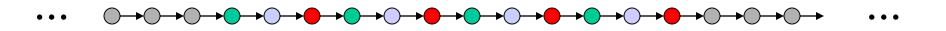
Today's Lecture

- More HMM examples
- Limitations of HMMs
- PhyloHMMs & PhastCons

HMM Examples (cont'd)

- Simple 7-state prokaryote genome model:
 - 1 state for intergenic regions
 - 3 states for codon positions in top-strand genes
 - 3 for codon positions in bottom-strand genes
- more complex models including sites (with states for each position in site)
 - promoter elements
 - Shine-Dalgarno (translation start site)
 - (in eukaryotes) splice sites, polyadenylation sites etc.

7-state model for prokaryote genomes



- intergenic
- first codon position top strand coding sequence
- second codon position top strand coding sequence
- third codon position top strand coding sequence
- first codon position bottom strand coding sequence
- second codon position bottom strand coding sequence
- third codon position bottom strand coding sequence

a (very short!) 'bottom-strand' gene, in a different region of the genome:

• N.B. the emitted symbols are always *top strand* nucleotides!

Other HMM examples (see Durbin et al.)

- protein families (like site models but important to allow insertions & deletions)
- Pair HMMs
- protein structure (symbols emitted are structural elements)

HMM Examples (cont'd)

- Ordinary Markov chain model:
 - states = observed symbols
 - emission probs = 1 or 0
 - transition probs = prob of observing a symbol, given the preceding one.
- Order k Markov model
 - states = length *k* words (e.g. $b_1b_2 \dots b_k$)
 - (unique) symbol emitted by $b_1b_2 \dots b_k$ is b_k
 - transition prob from $b_1b_2 \dots b_k$ to $c_1c_2 \dots c_k$ is non-zero only if
 - $c_1c_2 \dots c_{k-1} = b_2b_3 \dots b_k$, in which case it is $P(b_{k+1}|b_1b_2 \dots b_k)$ where $b_{k+1} = c_k$

D-segments & 2-state HMMs

- Consider 2-state HMM
 - states 1 & 2, transition probs $a_{11}, a_{12}, a_{21}, a_{22}$
 - observed symbols $\{r\}$, emission probs $\{e_1(r)\}, \{e_2(r)\}$
- Define

scores s(r) = log($e_2(r) a_{22}/(e_1(r) a_{11})$) S = -D = log($a_{11}a_{22}/(a_{21}a_{12})$)

- Then if S > 0, the maximal D-segments in a sequence $(r_i)_{i=1, n}$ are the state-2 segments in the Viterbi parse.
- So via D-segment algorithm can get Viterbi parse in just one pass through the sequence!
- can allow for non-.5 initiation probs by starting cumul at non-zero value

Limitations of HMMs

- Markov chain cond'n on states is unrealistic
 - biological features have complex dependencies
- In particular, duration modelling frequently unrealistic
 - can deal with this
 - Increase number of states
 - 'generalized HMMs'
 - but at cost of speed & elegance
- Other issues (arising with any complex models!)
 - Parameter estimation can be difficult and give suboptimal results
 - many local maxima in complex surface
 - Need to avoid overfitting

Detecting sequence conservation with PhyloHMMs

- PhyloHMMs: Yang 1995; Felsenstein & Churchill 1996
- Siepel A. *et al.* (2005): Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes. *Genome Res.* 15:1034-50
 - basis of PhastCons conservation scores (UCSC genome browser)

- Goal: starting from multiple genome sequence alignment, identify
 - conserved regions (regions under purifying selection),
 - against background of
 - neutrally evolving regions

PhastCons PhyloHMM

- model:
 - 2-state HMM
 - c: conserved state
 - n: neutral (or nonconserved) state
 - emitted symbols are alignment columns
 - emission probabilities based on *phylogenetic tree* relating sequences
 - discussed in Genome 541, or molecular phylogeny course
 - gaps in alignment treated as missing data