Today's Lecture

1

• PhastCons

Detecting sequence conservation with PhyloHMMs

- PhyloHMMs: Yang 1995; Felsenstein & Churchill 1996
- Siepel A. *et al.* (2005): Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes. *Genome Res.* 15:1034-50
 - basis of PhastCons conservation scores (UCSC genome browser)

- Goal: starting from multiple genome sequence alignment, identify
 - conserved regions (regions under purifying selection),
 - against background of
 - neutrally evolving regions

PhastCons PhyloHMM

- model:
 - 2-state HMM
 - c: conserved state
 - n: neutral (or nonconserved) state
 - emitted symbols are alignment columns
 - emission probabilities based on *phylogenetic tree* relating sequences
 - discussed in Genome 541, or molecular phylogeny course
 - gaps in alignment treated as missing data

PhastCons PhyloHMM

from Siepel A. et al. (2005). Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes. Genome Res. 15:1034-50.

Nonconserved

Conserved

- branch lengths:
 - Expected # substitutions/site over corresponding evolutionary time period
 - for neutral state, should reflect underlying mutation rate
 - for conserved state: mutation rate \times scaling factor ρ
 - $\rho = \text{frac of mutations that escape purifying selection}$
 - $\rho \approx .33$ (for vertebrates)