Today’s Lecture

» (Finding exact matches in sequences using
suffix arrays)

 Algorithm generalities / complexity

 Directed graphs, DAGS

Finding perfectly matching
subseguences of a sequence

 ldea (much more efficient than ‘brute force’
approach):
— suffix array (Manber & Myers, 1990)
— make list of pointers to all positions in sequence
— lexicographically sort list of strings that are pointed to

— process the list: adjacent entries are “maximally
agreeing”

Suffix array step 1:
List of Pointers to Suffixes

ACCTGCACTAAACCGTACACTGGGTTCAAGAGATTTCCC

ACCTGCACTAAACCGTACACTGGGTTCAAGAGATTTCCC
CCTGCACTAAACCGTACACTGGGTTCAAGAGATTTCCC
CTGCACTAAACCGTACACTGGGTTCAAGAGATTTCCC
TGCACTAAACCGTACACTGGGTTCAAGAGATTTCCC
GCACTAAACCGTACACTGGGTTCAAGAGATTTCCC
CACTAAACCGTACACTGGGTTCAAGAGATTTCCC
ACTAAACCGTACACTGGGTTCAAGAGATTTCCC
CTAAACCGTACACTGGGTTCAAGAGATTTCCC
TAAACCGTACACTGGGTTCAAGAGATTTCCC
AAACCGTACACTGGGTTCAAGAGATTTCCC
AACCGTACACTGGGTTCAAGAGATTTCCC
ACCGTACACTGGGTTCAAGAGATTTCCC

Suffix array step 2:

View as Strings to be Compared

ACCTGCACTAAACCGTACACTGGGTTCAAGAGATTTCCC

ACCTGCACTAAACCGTACACTGGGTTCAAGAGATTTCCC
CCTGCACTAAACCGTACACTGGGTTCAAGAGATTTCCC
CTGCACTAAACCGTACACTGGGTTCAAGAGATTTCCC
TGCACTAAACCGTACACTGGGTTCAAGAGATTTCCC
GCACTAAACCGTACACTGGGTTCAAGAGATTTCCC
CACTAAACCGTACACTGGGTTCAAGAGATTTCCC
ACTAAACCGTACACTGGGTTCAAGAGATTTCCC
CTAAACCGTACACTGGGTTCAAGAGATTTCCC
TAAACCGTACACTGGGTTCAAGAGATTTCCC
AAACCGTACACTGGGTTCAAGAGATTTCCC
AACCGTACACTGGGTTCAAGAGATTTCCC
ACCGTACACTGGGTTCAAGAGATTTCCC

Suffix array step 3:

Sort the Pointers Lexicographically

P1o
P11
P2s
P17
P12
P1

P19
P29
P31
P33
P27

ACCTGCACTAAACCGTACACTGGGTTCAAGAGATTTCCC

AAACCGTACACTGGGTTCAAGAGATTTCCC
AACCGTACACTGGGTTCAAGAGATTTCCC
AAGAGATTTCCC
ACACTGGGTTCAAGAGATTTCCC
ACCGTACACTGGGTTCAAGAGATTTCCC
ACCTGCACTAAACCGTACACTGGGTTCAAGAGATTTCCC
ACTAAACCGTACACTGGGTTCAAGAGATTTCCC
ACTGGGTTCAAGAGATTTCCC

AGAGATTTCCC

AGATTTCCC

ATTTCCC

CAAGAGATTTCCC

Finding Matching Subseguences
Using the Sorted List of Pointers

 Perfectly matching subsequences

— (more precisely — the pointers to the starts of those
subsequences)

are “‘near’ each other 1n the sorted list

 For a given subsequence, a longest perfect match
to It I1s adjacent to it in the sorted list

— (there may be other, equally long matches which are
not adjacent, but they are nearby).

(Average Case) Complexity Analysis

If N = sequence length, sorting can be done with
— O(Nlog(N)) comparisons,
— each requiring O(log(N)) steps on average,

for an overall complexity of O(N(log(N))?).

— (Processing the sorted list requires an additional O(N) steps which does not
affect the overall complexity).

Manber & Myers (1990) have more efficient algorithm (O(Nlog(N)))

several O(N) algorithms are now known — but the best
Implementations are not as fast as O(Nlog(N)) algorithms, even for
very large genomes!!

3 other, older O(N) methods (‘suffix trees’), but these are

— much less space efficient,
— harder to program, and
— (probably) slower in practice

« HW #1 asks you to apply this algorithm to find:

— longest perfectly matching subsequences in 2 genomic
sequences & their reverse complements.

« much faster than an O(N2) algorithm (e.g. Smith-
Waterman, or even BLAST), but

 limited to finding exact matches

Algorithms — Some General Remarks

« The most widely used algorithms are the oldest
— e.g. sorting lists, traversing trees, dynamic programming.
The challenge in CMB is usually not finding new algorithms,
but rather
— finding biologically appropriate applications of old ones.
« Often prefer
— suboptimal but easy-to-program algorithm over more optimal one
— or space-efficient algorithm over time-efficient one.
» Probabilities are important in
— Interpreting results
— guiding search
The most powerful analyses generally involve probabilistic models,
rather than deterministic ones.

Genomes are big
but computers are fast!

 Typical laptop clock speed: ~ 1 Ghz
— Potentially billions of CPU instructions / sec

 Important practical consideration in dealing
with genome-scale data sets: compared to
CPU operations,

— non-cache memory accesses are very slow
(100s of cycles)

— disk accesses are even slower (1000s of cycles)

— for both, random (non-sequential) accesses are
much slower than sequential accesses

10

Algorithmic Complexity

 Basic questions about an algorithm:
— how long does it take to run?
— how much space (RAM or disk space) does it require?
« Would like precise function f(N), e.g.
f(N) =.05 N3 +50.7 N> + 6.03 N
for
— running time in secs, or
— space in kbytes,
as function of the size N of input data set.
« But

— tedious to derive &

— depends on (often uninteresting — though important!) hardware &
software implementation details.

11

Algorithmic Complexity (cont’d)

» Instead, more customary to give “the” asymptotic
complexity, I1.e. expression g(N) such that

C,9(N) <f(N) <C,g(N)
for some constants C, and C,, and N large enough.

« This is written O(g(N)), where notation O() means
“up to an unspecified multiplicative constant™.

— e.g. for the f(N) above, the dominating term for large N is
.05 N3, so

e can take g(N) = N3
« asymptotic complexity = O(N3).

12

Algorithmic Complexity (cont’d)

 Can be misleading, since

— for small N a different term may dominate

e (e.g. 29 term in above example much more important for N <
1000)

— size of constant may be quite important
* (big difference between .05 and 5,000,000!)

* e.g. BLAST and Smith-Waterman both O(N?), but size of
constant enormously different

 put very useful as rough guide to performance.

13

Algorithmic Complexity (cont’d)

« Cache misses (non-cache memory accesses) and
disk accesses often dominate running time, yet
are ‘invisible’ to complexity analysis (because
affect constant factor only)

14

Algorithmic Complexity (cont’d)

« Another limitation to complexity analysis:
— time or space requirement may depend on specific
characteristics of input data.
« Usually give “worst case” complexity
— applies to the worst data set of a given size,

but

— In biological situations the average biologically
occurring case IS
* more relevant

» often much easier than worst case (which may never arise in
practice), or even “average case” in some 1dealized sense.

15

Algorithmic Complexity (cont’d)

 Proof that a problem is NP-hard

— (has complexity very likely greater than any polynomial
function of N and therefore effectively unsolvable for
large N)

can be useful in guiding search for more efficient
algorithms
but can also be misleading, since

— we need some solution anyway, for data sets occurring in
practice

— average biologically relevant case may be quite
manageable

16

Directed Graphs

A directed graph is a pair (V, E) where
— V is a finite set of vertices, or nodes.

— E 1s a set of ordered pairs (called edges) of vertices In
V.

An edge (v;, v;) Is said to leave v; and to enter v;.
— (v; and v; are vertices)

In-degree of a vertex = # edges entering It;
out-degree = # edges leaving It.

17

Example:

. V={1,2,3,4,5,6},

- E={1.2), (1,3), (2,4), (4,1), (5,3), (3,1)}
* Vertex 3 has in-degree 2 and out-degree 1.

1 - - 3
\\6 \
2), S

18

Paths and Cycles

A path of length k in G from u to «’ (vertices) Is

— a sequence P of vertices (v, vy, . . ., V,) such that
¢ V,=U,
* vV, =u’,and
e (vi;,Vv;)Isanedgefori=1,2,.. .k

A path can have length 0.
We write |P| = k.

A cycle 1s a path of length > 1 from a vertex to itself.
In example at right,

1 - - 3
— (1,2,4) i1s a path,
— (1,3,5) is not, and \ 9 \
— (1,2,4,1) and (1,3,1) are cycles. 2 5
\ 4

19

Paths and Cycles (cont’d)

 Can join
—any path (u, ..., v) fromutov,to
—any path (v, ... ,w) fromvtow

to get a path (u, ..., v, ..., w) from u to w.

20

DAGS

« A directed acyclic graph (DAG) is a directed graph with
no cycles.
» Ina DAG, for distinct nodes v; and v;, we say
— v;isa parent of v;, and v; Is a child of v;, If
» there Is an edge (v;, v;)
— vjIsan ancestor of v;, and v; Is a descendant of v, If
» there is a path fromv; to v,

* |Ina DAG the length of a path cannot exceed |V| - 1,
— (where |V| = total # vertices in graph)
because

— In a path of length > |V,
« at least one vertex v would have to appear twice in the path;
— but then there would be a path from v to v, i.e. a cycle.

21

Structure of DAGS

» Define the depth of anodevinV as:
— the length of the longest path ending at v;

by above, the depth is well-defined and < |V| - 1.

» Every descendant w of a node v has higher depth
thanv: If

— (U, ... ,v) Is path of length n = depth(v) ending at v,
and

— (v, ..., w) Is path from v to w,
then (u, ..., v, ..., w) Is a path of length > n ending
at w, so depth(w) > n.

22

Structure of DAGs (cont’d)

 Every node v of positive depth has a parent of depth
exactly one less:
— Let (u, ..., v’, v) be path of length n = depth(v) ending at v.
— Then v’ is a parent of v.
— Since (U, ..., v’) has length n — 1, depth(v’) > n — 1.
— Since also depth(v’) < n (because v is a descendant of v”’),

depth(v’) Is exactly n — 1.
* The nodes on any path are of increasing depth.

23

