
Today’s Lecture

• (Finding exact matches in sequences using 

suffix arrays)

• Algorithm generalities / complexity

• Directed graphs, DAGs
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Finding perfectly matching 

subsequences of a sequence

• Idea (much more efficient than ‘brute force’ 

approach): 

– suffix array (Manber & Myers, 1990)

– make list of pointers to all positions in sequence

– lexicographically sort list of strings that are pointed to

– process the list: adjacent entries are “maximally 

agreeing”



Suffix array step 1:

List of Pointers to Suffixes
ACCTGCACTAAACCGTACACTGGGTTCAAGAGATTTCCC

ACCTGCACTAAACCGTACACTGGGTTCAAGAGATTTCCC
CCTGCACTAAACCGTACACTGGGTTCAAGAGATTTCCC
CTGCACTAAACCGTACACTGGGTTCAAGAGATTTCCC
TGCACTAAACCGTACACTGGGTTCAAGAGATTTCCC
GCACTAAACCGTACACTGGGTTCAAGAGATTTCCC
CACTAAACCGTACACTGGGTTCAAGAGATTTCCC
ACTAAACCGTACACTGGGTTCAAGAGATTTCCC
CTAAACCGTACACTGGGTTCAAGAGATTTCCC
TAAACCGTACACTGGGTTCAAGAGATTTCCC
AAACCGTACACTGGGTTCAAGAGATTTCCC
AACCGTACACTGGGTTCAAGAGATTTCCC
ACCGTACACTGGGTTCAAGAGATTTCCC

.

.

.

p1
p2
p3
p4
p5
p6
p7
p8
p9
p10
p11
p12



Suffix array step 2:

View as Strings to be Compared
ACCTGCACTAAACCGTACACTGGGTTCAAGAGATTTCCC

ACCTGCACTAAACCGTACACTGGGTTCAAGAGATTTCCC
CCTGCACTAAACCGTACACTGGGTTCAAGAGATTTCCC
CTGCACTAAACCGTACACTGGGTTCAAGAGATTTCCC
TGCACTAAACCGTACACTGGGTTCAAGAGATTTCCC
GCACTAAACCGTACACTGGGTTCAAGAGATTTCCC
CACTAAACCGTACACTGGGTTCAAGAGATTTCCC
ACTAAACCGTACACTGGGTTCAAGAGATTTCCC
CTAAACCGTACACTGGGTTCAAGAGATTTCCC
TAAACCGTACACTGGGTTCAAGAGATTTCCC
AAACCGTACACTGGGTTCAAGAGATTTCCC
AACCGTACACTGGGTTCAAGAGATTTCCC
ACCGTACACTGGGTTCAAGAGATTTCCC

.

.

.

p1
p2
p3
p4
p5
p6
p7
p8
p9
p10
p11
p12



Suffix array step 3:

Sort the Pointers Lexicographically
ACCTGCACTAAACCGTACACTGGGTTCAAGAGATTTCCC

.

.

AAACCGTACACTGGGTTCAAGAGATTTCCC
AACCGTACACTGGGTTCAAGAGATTTCCC
AAGAGATTTCCC
ACACTGGGTTCAAGAGATTTCCC

CAAGAGATTTCCC

ACCTGCACTAAACCGTACACTGGGTTCAAGAGATTTCCC
ACCGTACACTGGGTTCAAGAGATTTCCC

ACTGGGTTCAAGAGATTTCCC
ACTAAACCGTACACTGGGTTCAAGAGATTTCCC

AGAGATTTCCC
AGATTTCCC
ATTTCCC

.

p10
p11
p28
p17
p12
p1
p7
p19
p29
p31
p33
p27
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Finding Matching Subsequences 

Using the Sorted List of Pointers

• Perfectly matching subsequences 

– (more precisely – the pointers to the starts of those 

subsequences) 

are “near” each other in the sorted list

• For a given subsequence, a longest perfect match 

to it is adjacent to it in the sorted list 

– (there may be other, equally long matches which are 

not adjacent, but they are nearby).
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(Average Case) Complexity Analysis

• If N = sequence length, sorting can be done with 

– O(Nlog(N)) comparisons, 

– each requiring O(log(N)) steps on average, 

for an overall complexity of O(N(log(N))2). 

– (Processing the sorted list requires an additional O(N) steps which does not 
affect the overall complexity). 

• Manber & Myers (1990) have more efficient algorithm (O(Nlog(N)))

• several O(N) algorithms are now known – but the best 
implementations are not as fast as O(Nlog(N)) algorithms, even for 
very large genomes!!

•  other, older O(N) methods (‘suffix trees’), but these are
– much less space efficient, 

– harder to program, and 

– (probably) slower in practice
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• HW #1 asks you to apply this algorithm to find: 

– longest perfectly matching subsequences in 2 genomic 

sequences & their reverse complements. 

• much faster than an O(N2) algorithm (e.g. Smith-

Waterman, or even BLAST), but

• limited to finding exact matches
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Algorithms – Some General Remarks

• The most widely used algorithms are the oldest

– e.g. sorting lists, traversing trees, dynamic programming. 

The challenge in CMB is usually not finding new algorithms, 

but rather 

– finding biologically appropriate applications of old ones.

• Often prefer 

– suboptimal but easy-to-program algorithm over more optimal one 

– or space-efficient algorithm over time-efficient one.

• Probabilities are important in 

– interpreting results

– guiding search

The most powerful analyses generally involve probabilistic models, 
rather than deterministic ones.



Genomes are big 

but computers are fast!

• Typical laptop clock speed: ~ 1 Ghz

– Potentially billions of CPU instructions / sec

• Important practical consideration in dealing 
with genome-scale data sets: compared to 
CPU operations,

– non-cache memory accesses are very slow 
(100s of cycles)

– disk accesses are even slower (1000s of cycles)

– for both, random (non-sequential) accesses are 
much slower than sequential accesses

10



11

Algorithmic Complexity

• Basic questions about an algorithm:

– how long does it take to run?

– how much space (RAM or disk space) does it require?

• Would like precise function f(N), e.g.  

f(N) = .05 N3 + 50.7 N2 + 6.03 N 

for 

– running time in secs, or 

– space in kbytes, 

as function of the size N of input data set.  

• But 

– tedious to derive & 

– depends on (often uninteresting – though important!) hardware & 
software implementation details.
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Algorithmic Complexity (cont’d)

• Instead, more customary to give “the” asymptotic 

complexity, i.e. expression g(N) such that 

C1g(N)  < f(N) < C2g(N) 

for some constants C1 and C2 , and N large enough.  

• This is written O(g(N)), where notation O() means 

“up to an unspecified multiplicative constant”. 

– e.g. for the f(N) above, the dominating term for large N is 

.05 N3, so 

• can take g(N) = N3

• asymptotic complexity = O(N3). 
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Algorithmic Complexity (cont’d)

• Can be misleading, since 

– for small N a different term may dominate 

• (e.g. 2d term in above example much more important for N < 

1000)

– size of constant may be quite important 

• (big difference between .05 and 5,000,000!) 

• e.g. BLAST and Smith-Waterman both O(N2), but size of 

constant enormously different

• but very useful as rough guide to performance.
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• Cache misses (non-cache memory accesses) and 
disk accesses often dominate running time, yet 
are ‘invisible’ to complexity analysis (because 
affect constant factor only)

Algorithmic Complexity (cont’d)
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Algorithmic Complexity (cont’d) 

• Another limitation to complexity analysis:

– time or space requirement may depend on specific 
characteristics of input data. 

• Usually give “worst case” complexity 

– applies to the worst data set of a given size, 

but

– in biological situations the average biologically 
occurring case is 

• more relevant

• often much easier than worst case (which may never arise in 
practice), or even “average case” in some idealized sense.



16

Algorithmic Complexity (cont’d)

• Proof that a problem is NP-hard

– (has complexity very likely greater than any polynomial 
function of N and therefore effectively unsolvable for 
large N) 

can be useful in guiding search for more efficient 
algorithms 

but can also be misleading, since 

– we need some solution anyway, for data sets occurring in 
practice

– average biologically relevant case may be quite 
manageable
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Directed Graphs

• A directed graph is a pair (V, E) where 

– V is a finite set of vertices, or nodes. 

– E is a set of ordered pairs (called edges) of vertices in 

V. 

• An edge (vi, vj ) is said to leave vi and to enter vj. 

– (vi and vj are vertices) 

• in-degree of a vertex = # edges entering it; 

• out-degree = # edges leaving it.
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Example: 

• V = {1,2,3,4,5,6}, 

• E = {(1,2), (1,3), (2,4), (4,1), (5,3), (3,1)}

• Vertex 3 has in-degree 2 and out-degree 1.

1

2
4

3

5
6
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Paths and Cycles
• A path of length k in G from u to u’ (vertices) is 

– a sequence P of vertices (v0, v1, . . . , vk) such that 

• v0 = u, 

• vk = u’, and 

• (vi-1, vi ) is an edge for i = 1,2, . . ., k. 

• A path can have length 0. 

• We write |P| = k. 

• A cycle is a path of length  1 from a vertex to itself.

• In example at right, 

– (1,2,4) is a path, 

– (1,3,5) is not, and 

– (1,2,4,1) and (1,3,1) are cycles.

1

2
4

3

5
6
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Paths and Cycles (cont’d)

• Can join

– any path (u, ... , v) from u to v, to 

– any path (v, ... , w) from v to w

to get a path (u, ... , v, ... , w) from u to w.
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DAGs 

• A directed acyclic graph (DAG) is a directed graph with 
no cycles.

• In a DAG, for distinct nodes vi and vj, we say
– vi is a parent of vj, and vj is a child of vi, if 

• there is an edge (vi, vj )

– vi is an ancestor of vj, and vj is a descendant of vi, if 
• there is a path from vi to vj

• In a DAG the length of a path cannot exceed |V| - 1, 
– (where |V| = total # vertices in graph)

because 
– in a path of length  |V|,

• at least one vertex v would have to appear twice in the path; 

– but then there would be a path from v to v, i.e. a cycle.
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Structure of DAGs 

• Define the depth of a node v in V as: 

– the length of the longest path ending at v; 

by above, the depth is well-defined and  |V| - 1.

• Every descendant w of a node v has higher depth 

than v:  If 

– (u, ... ,v) is path of length n = depth(v) ending at v, 

and 

– (v, ..., w) is path from v to w, 

then (u, ..., v, ..., w) is a path of length > n ending 

at w, so depth(w) > n.
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Structure of DAGs (cont’d)

• Every node v of positive depth has a parent of depth 

exactly one less: 

– Let (u, ... , v’, v) be path of length n = depth(v) ending at v. 

– Then v’ is a parent of v. 

– Since (u, ... , v’) has length n – 1, depth(v’)  n – 1.

– Since also depth(v’) < n (because v is a descendant of v’), 

depth(v’) is exactly n – 1.

• The nodes on any path are of increasing depth.


