Today's Lecture

DAG structure

• Dynamic programming to find highest weight paths in WDAGs

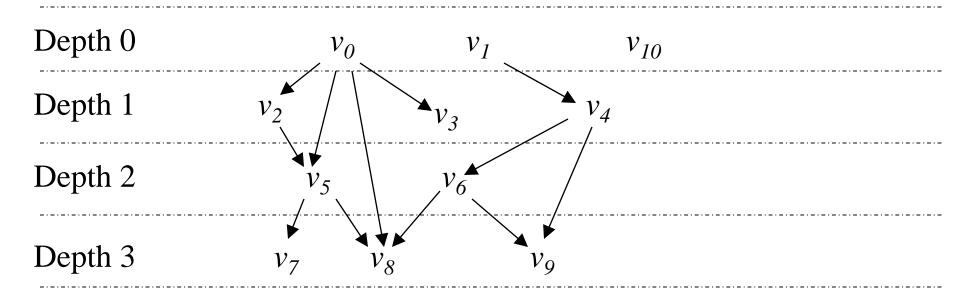
Structure of DAGs

- Define the *depth* of a node v in V as:
 - the length of the longest path ending at *v*;
 - by above, the depth is well-defined and $\leq |V| 1$.
- Every descendant w of a node v has higher depth than v: If
 - -(u, ..., v) is path of length n = depth(v) ending at v, and
 - -(v, ..., w) is path from v to w,
 - then (u, ..., v, ..., w) is a path of length > n ending at w, so depth(w) > n.

Structure of DAGs (cont'd)

- Every node v of positive depth has a parent of depth exactly one less:
 - Let (u, ..., v', v) be path of length n = depth(v) ending at v.
 - Then v' is a parent of v.
 - Since (u, ..., v') has length n 1, depth $(v') \ge n 1$.
 - Since also depth(v') < n (because v is a descendant of v'), depth(v') is exactly n-1.
- The nodes on any path are of increasing depth.

Structure of DAGs (cont'd)



4

Important special cases:

- A (rooted) tree is a DAG which
 - has unique depth 0 node (the *root*), and
 - every other node has in-degree 1
 - (i.e. has a unique parent, of depth one less than that of the node).
- A binary tree is a tree in which
 - every node has out-degree at most 2.
- A *linked list* is a tree in which
 - every node has out-degree at most 1
 - or equivalently, a DAG in which ∃ at most one node of each depth

binary tree

v_0 v_1 v_2 v_3 v_4 v_5 v_6 v_7

linked list



Remarks on Depth Structure

- For dynamic programming algorithm
 - we need an order $v_1, v_2, ..., v_n$ for the vertices
 - (not a path!)

in which parents appear before children.

- From the above, *depth order*
 - (in which depth 0 nodes are listed first, then depth 1 nodes, etc.) is such an order.
- In general there are many other such orders.
- We haven't given constructive procedure for finding the depths of all vertices.
 - For an arbitrary DAG, can be done in O(|V| + |E|) time;
 - we omit algorithm, since for DAGs related to sequence analysis, the depth structure is obvious.

Weighted Directed Graphs

- A weighted directed graph is
 - a directed graph (V, E) together with
 - a function w from E to the real numbers,
 - i.e. with a numerical *weight* w(e) (which may be positive, negative, or 0) associated to each edge e.

A weighted DAG is called a WDAG.

- The (sum) weight of a path is defined to be the sum of the weights on the edges of the path.
- Similarly, the *product weight of a path* is the product of the edge weights
 - usually only consider this when all weights are non-negative.
- weight of a path P is written w(P)
- For a path of length 0 (i.e. consisting of a single vertex):
 - the sum weight is 0
 - the product weight is 1

Highest Weight Paths on WDAGs

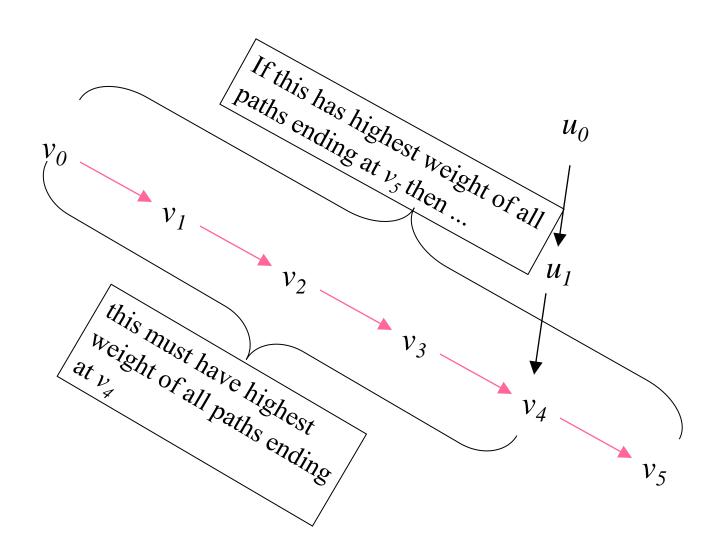
- *Problem*: find a path with the highest possible weight.
- Solution:
 - "Brute force" approach
 - i.e. simply enumerating all possible paths and comparing their weights
 - is usually impractical (too many paths!)
 - Instead, use the method of dynamic programming ('The Fundamental Algorithm of Computational Biology').

Highest Weight Paths on WDAGs (cont'd)

- Let $P_n = (v_0, v_1, \dots, v_n)$ be a path of highest weight.
- Then for each k < n, the sub-path $P_k = (v_0, v_1, \ldots, v_k)$ must have highest weight of all paths ending at v_k , because
 - $-if Q = (u_0, u_1, \dots, v_k)$ were another path ending at v_k and having higher weight than P_k ,
 - then the path $(Q, v_{k+1}, ..., v_n)$ would have weight $w((Q, v_{k+1}, ..., v_n)) = w(Q) + w((v_k, ..., v_n))$ > $w(P_k) + w((v_k, ..., v_n)) = w(P_n)$,

contradicting assumption that P_n has highest weight.

Subpaths of a highest-weight path can't be improved:

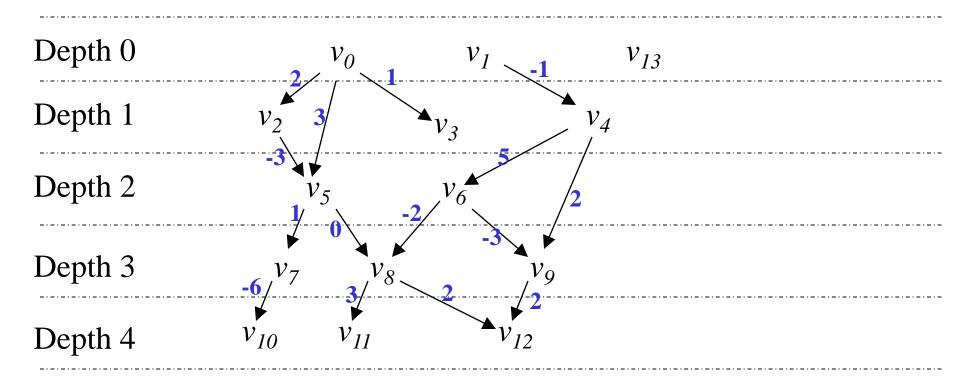


Highest Weight Paths on WDAGs (cont'd)

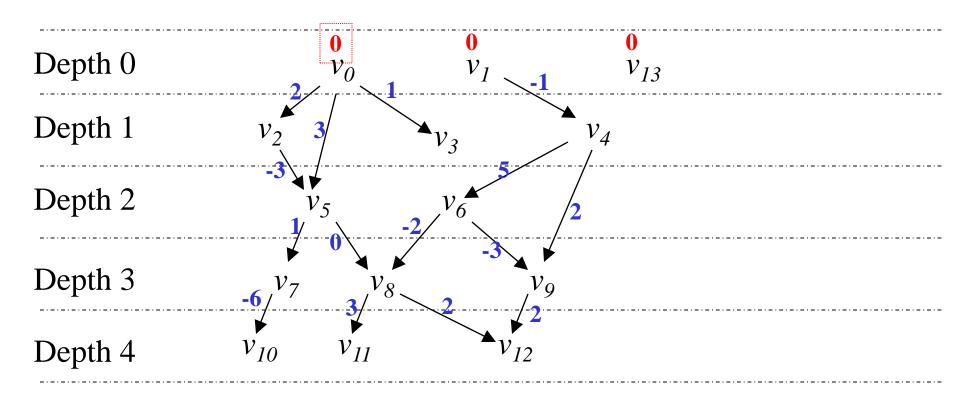
- So generalize the problem as follows:
- find, for *each* vertex v, the highest weight of all paths ending at v call this w(v)
- Can find w(v) in single pass through V, as follows:
 - process the v in depth order (or any order in which parents precede children)
 - if v has no parents, w(v) = 0 (the only path ending at v is (v)).
 - for any other v, except for the path (v) (which has weight 0), any path ending at v is of form $(v_0, v_1, \ldots, v_k, u, v)$. Then
 - u is a parent of v, so w(u) has already been computed, and $w((v_0, v_1, \dots, v_k, u, v)) \le w(u) + w((u, v))$
 - with equality for an appropriate choice of v_i .
 - Therefore we may compute w(v) as

$$w(v) = \max(0, \max_{u \in parents(v)} (w(u) + w((u,v))))$$

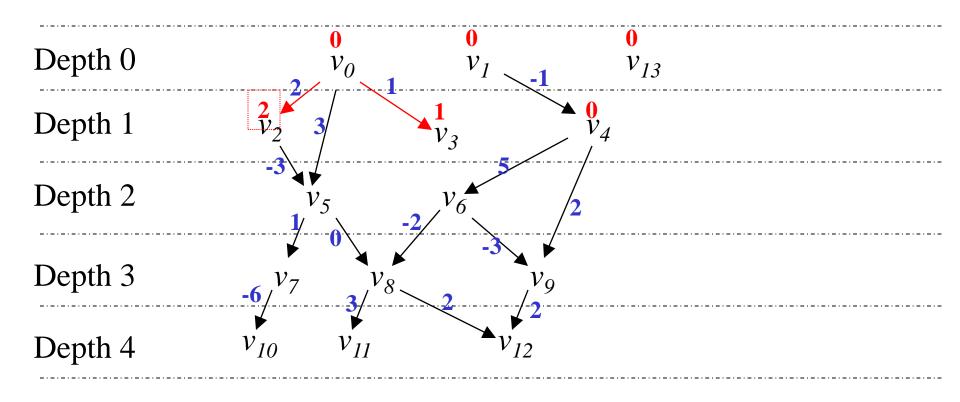
Example



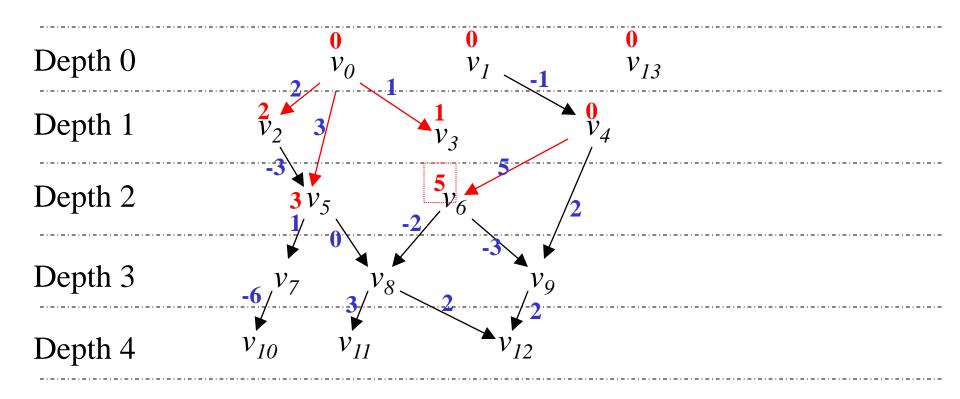
w(v) – depth 0 nodes



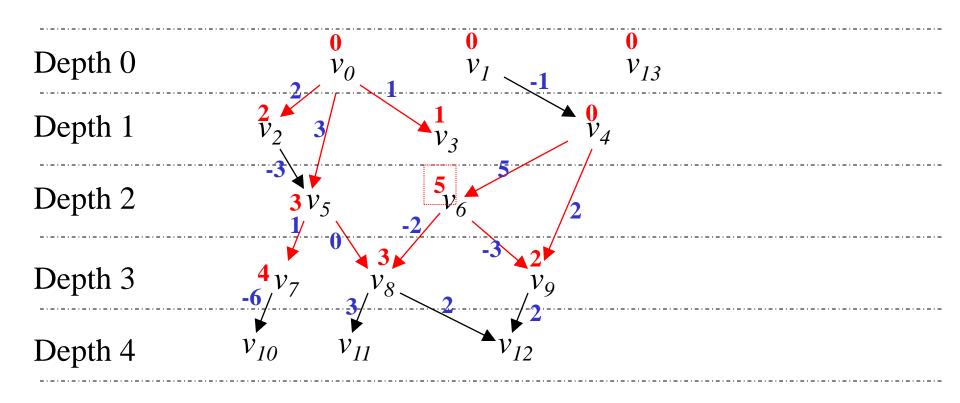
w(v) – depth 1 nodes



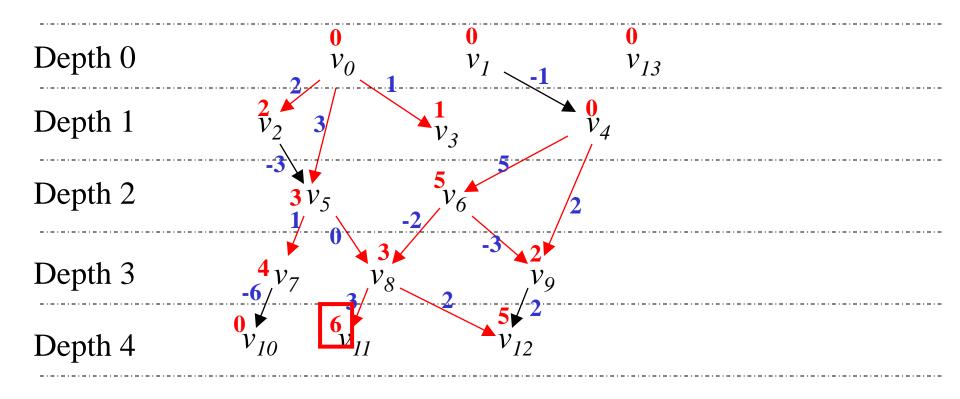
w(v) – depth 2 nodes



w(v) – depth 3 nodes



w(v) – depth 4 nodes



Highest Weight Paths on WDAGs (cont'd)

• To reconstruct best path, need "traceback" pointer to immediate predecessor of v in best path:

$$T(v) = \begin{cases} v & w(v) = 0 \\ \underset{u \in \text{parents}(v)}{\text{arg max}} (w(u) + w((u,v))) & w(v) \neq 0 \end{cases}$$

- in preceding graph, T(v) is the *parent* on *red edge* coming into v
 - if more than one such edge, pick one at random;
 - if no such edge, T(v) = v
- Sometimes useful to record beginning of best path:

$$B(v) = \begin{cases} v & w(v) = 0 \\ B(T(v)) & w(v) \neq 0 \end{cases}$$

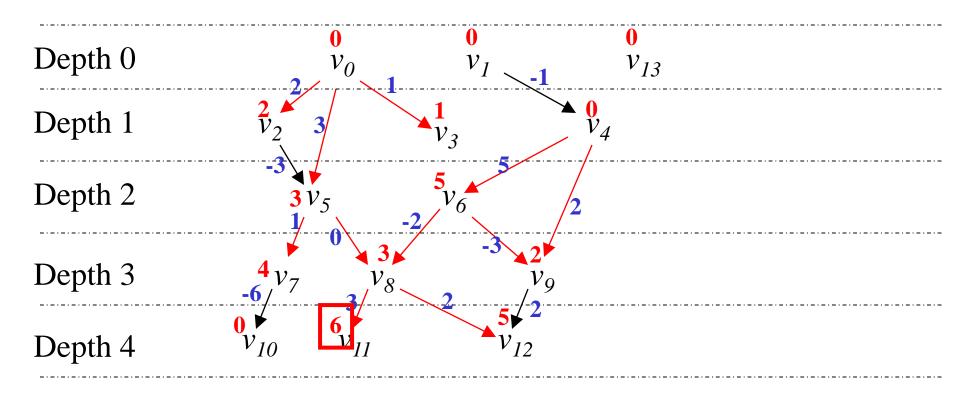
Highest Weight Paths on WDAGs (cont'd)

• Then highest weight of any path in graph is

$$\max_{v \in V} (w(v))$$

- updated as each node is visited
 - indicated by in preceding graph and so doesn't require additional pass through vertices
- if $u = \operatorname{argmax}_{v \in V}(w(v))$, can reconstruct highest weight path by tracing back from u, using T:
 - path ends at u;
 - immediate predecessor of u is T(u);
 - predecessor of T(u) is T(T(u)); etc.
 - stop when T(v) = v.
- In preceding example, highest weight is 6 and $u = v_{11}$

Dynamic programming on WDAGs



Complexity of Dynamic Programming

- Time to find a best path is O(|E/+|V|):
 - in initial pass, visit each node, and each edge into that node: O(|E|+|V|)
 - in traceback, visit subset of nodes, and unique edge from each node: O(|V|)
 - (Complexity to find *all* highest weight paths can be higher)

For very large graphs, even O(|E|+|V|) may be unacceptable!

Complexity Analysis (cont'd)

- Space requirements:
 - If only want weight of best path, and beginning and end,
 then
 - don't need T(v), and
 - only need retain w(v) and B(v) until have processed all children of v (or when best path found so far ends at v).

Space depends on graph structure, but usually $\ll O(|V|)$.

- If want path itself, must store $T(v) \forall v$
 - $-\operatorname{space} = O(|V|)$
 - – ∃ algorithms (for some graphs) to reduce this, but may take more time.