Today’s Lecture

 Finding multiple high-scoring segments
¢ “D-segments”

— relationship to 2-state HMMs
 Probability models in biology



Maximal Segment Analysis —
Definitions

o let{s;},i=1,...N be sequence of real nos.

— e.g. scores assigned to
* residues in a DNA or protein sequence, or
e columns in an alignment

 segment Is set of integers of the form
[de]={i|d<i<e} wherel<d<e<N.
» score of [d,e] is Z°._4;



« A maximal(-scoring) segment | Is one such that
— P1: no subsegment of | has a higher score than |
— P2: no segment properly containing | satisfies P1

« Example:
contained In
higher-scoring | | maximal-scoring segments

segment / \

score = 75, but does not satisfy P1



* Problem: given S > 0, find all maximal segs of score > S

» Segments are paths in a linked-list WDAG with N+1
vertices and N edges
» Highest weight path is found by dynamic programming;

In (pseudo-)pseudocode:
cumul = max = 0; start = 1;
for (i=1;i <N;i++) {

cumul += s[i];

if (cumul <0)
{cumul =0; start=i+1;} /* NOTE RESET TO ZERO */

else if (cumul > max)
{max = cumul; best_end =1i; best_start = start;}

}

If (max > S) print best_start, best_end, max



Maximal segments — from cumulative score plot
(without O resets)
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 Can find all maximal segs of score > S using

following practical (but non-optimal) algorithm:
cumul = max =0; start=1:
for(i=1;i<N;i++){
cumul += s[i];
If (cumul > max)
{max = cumul; end = 1;}
If (cumul<O0ori==N){
If (max > S)

{print start, end, max; i1=end;} /*N.B. MUST BACKTRACK! */
max = cumul =0; start=end =1+ 1;



‘backtracked’ region —
scanned twice
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« In worst case this is O(N?) (because of
backtracking),

— but in practice usually O(N) because a given
base Is usually traversed only a few times

» Ruzzo-Tompa algorithm guarantees O(N)



» undesirable aspect of maximal segments as so
defined:

— single maximal seg may contain two (or more) high-
scoring regions, separated by significant negative-
scoring regions

— 1.e. two possibly biologically distinct target occurrences
get merged into one maximal segment



« Example:

50 -45 100

" now entire segment has score = 105, & satisfies P1 and P2
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A Dbetter problem!

to avoid this, have max allowed ‘dropoff’ D
<0

D-segment Is segment without any
subsegments of score < D

maximal D-segment i1s D-segment | such
that

* P1: no subsegment of | has higher score than |
« P2: no D-segment properly containing | satisfies P1

Problem: given S (= -D), find all maximal
D-segs of score > S
— (algorithm fails If S <-D)
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Maximal D-segments

maximal segment

15t maximal D-segment

29 maximal D-segment
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« O(N) algorithm to find all maximal D-segs:
cumul = max = 0; start = 1;
for(1=1;1<N;1++) {

cumul += s[i];

If (cumul > max)
{max = cumul; end =1i;}

If (cumul <0 orcumul<max+Dori==N){
If (max > S)

{print start, end, max; }

max = cumul =0: start=end =1+ 1; /* NO BACKTRACKING
NEEDED! */
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« S0 more biologically relevant problem is also
computationally simpler!

 what are appropriate S and D?

— mainly an empirical question (based on known
examples); altho
* Interpretation via 2-state HMM (next slide) can be useful

 Karlin-Altschul theory tells when they are ‘statistically
significant’
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D-segments & 2-state HMMS

Consider 2-state HMM

— states 1 & 2, transition probs a,;, a,,, a,;, a,,
— observed symbols {r}, emission probs {e,(r)}, {e,(r)}

Define

scores s(r) = log(e,(r) a,,/(e,(r) a;;))
S =-D =log(a;;a,/(a,;a;,))

Then iIf S > 0, the maximal D-segments In a sequence
(r)i-1 o are the state-2 segments in the Viterbi parse.

So via D-segment algorithm can get Viterbi parse in just
one pass through the sequence!

can allow for non-.5 Initiation probs by starting cumul at
non-zero value
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« For HW 3, implement D-segment
algorithm to find CNVs
— data: next-gen read alignments to genome

— observed symbols are counts of # read starts at
each position (0, 1, 2, > 3)

— 2 states: non-dup, dup (dup has twice as many
read starts per base as non-dup state)

— emission probs given by Poisson dist’n with
approp mean

— transition probs set empirically
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CNVs & Read Depth

* CNV = ‘copy number variant’— e.g. region that Is single
copy In reference sequence but duplicated in sample

* One way to detect: map reads from sample onto
reference, look for regions of atypical coverage depth

'Single-copy’ in sample multi-copy in sample
and reference
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D-Segments — concluding remarks

* Powerful tool for analyzing ‘linear’ data
— Single sequences (incl. motifs, numerical data)
— Fixed alignment

o Strengths:

— Very simple to program

— Very fast, even for mammalian genomes
« Main limitation:

— Only allows two types of segments (‘target’ and
‘background’)
 Essentially a generalization of 2-state HMMs

 multi-state HMMSs are more flexible
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Biology involves probabilities,
at several levels:

Fundamental laws of nature
Mutations (imperfect replication)

Transmission of DNA from parent to
offspring in populations of individuals

Random aspects of environment
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Key Physical Laws Governing
Living Organisms

 Individual atoms & molecules:
— guantum mechanics / qguantum electrodynamics

» Systems of molecules:
— statistical mechanics / 2d law of thermodynamics

These fundamental laws are essentially probabilistic!

“The true logic of this world is in the calculus of probabilities”
— James Clerk Maxwell

“I cannot believe that God plays dice with the cosmos” —
Albert Einstein; nonetheless two of his three great 1905
papers dealt with statistical aspects of nature (photoelectric
effect & Brownian motion)!
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Probability Models of Sequences

« Sample questions in genome seguence analysis:
— Is this sequence a splice site?
— Is this sequence part of the coding region of a gene?
— Are these two sequences evolutionarily related?
— Does this sequence show evidence of selection?

« Computational analysis can’t answer:
— only generates hypotheses
which must ultimately be tested by experiment.
 But hypotheses should

— have some reasonable chance of being correct, and
— carry indication of reliability.
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* We use probability models of sequences to address
such questions.

 Not the only approach, but usually the most
powerful, because

— seqs are products of evolutionary process which is itself
probabilistic

— want to detect biological “signal” against “noise” of
background sequence or mutations.
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“All models are wrong; some models are useful.”
— George Box

“What is simple is always wrong. What is not Is
unusable.” — Paul Valery
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