
Today’s Lecture

• Finding multiple high-scoring segments

• “D-segments”

– relationship to 2-state HMMs

• Probability models in biology
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Maximal Segment Analysis –

Definitions 

• let {si}, i = 1,...,N  be sequence of real nos.

– e.g. scores assigned to

• residues in a DNA or protein sequence, or 

• columns in an alignment

• segment is set of integers of the form 

[d,e] = {i | d  i  e}  where 1 d  e  N. 

• score of [d,e] is e
i=d si
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50 100-75

score = 75, but does not satisfy P1

maximal-scoring segments

contained in 

higher-scoring 

segment

• A maximal(-scoring) segment I is one such that 

– P1: no subsegment of I has a higher score than I

– P2: no segment properly containing I satisfies P1

• Example:
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• Problem: given S > 0, find all maximal segs of score  S

• Segments are paths in a linked-list WDAG with N+1 

vertices and N edges 

• Highest weight path is found by dynamic programming;

in (pseudo-)pseudocode:

cumul = max = 0;  start = 1;

for (i = 1; i  N; i++)  {

cumul += s[i];

if (cumul  0)

{cumul = 0;  start = i + 1;}  /* NOTE RESET TO ZERO */

else if (cumul  max) 

{max = cumul;  best_end = i;  best_start = start;}

}

if (max  S) print best_start, best_end, max
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Maximal segments – from cumulative score plot 

(without 0 resets)

maximal segment

start (local minimum)

end (local maximum)



6

• Can find all maximal segs of score  S using 

following practical (but non-optimal) algorithm:

cumul = max = 0;  start = 1;

for (i = 1; i  N; i++) {

cumul += s[i]; 

if (cumul  max) 

{max = cumul; end = i;}

if (cumul  0 or i == N) {

if (max  S) 

{print start, end, max;   i = end; }  /* N.B. MUST BACKTRACK! */

max = cumul = 0;  start = end = i + 1;

}

}
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1st maximal segment 2d maximal segment

‘backtracked’ region –

scanned twice
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• In worst case this is O(N2) (because of 

backtracking), 

– but in practice usually O(N) because a given 

base is usually traversed only a few times

• Ruzzo-Tompa algorithm guarantees O(N)



9

• undesirable aspect of maximal segments as so 

defined: 

– single maximal seg may contain two (or more) high-

scoring regions, separated by significant negative-

scoring regions

– i.e. two possibly biologically distinct target occurrences 

get merged into one maximal segment  
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50 100-45

now entire segment has score = 105, & satisfies P1 and P2

• Example:
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A better problem!

• to avoid this, have max allowed ‘dropoff’ D 

< 0 

• D-segment is segment without any 

subsegments of score < D 

• maximal D-segment is D-segment I such 

that 
• P1: no subsegment of I has higher score than I

• P2: no D-segment properly containing I satisfies P1

• Problem: given S ( –D), find all maximal 

D-segs of score  S

– (algorithm fails if S < –D)
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Maximal D-segments

1st maximal D-segment 2d maximal D-segment

maximal segment

D:
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• O(N) algorithm to find all maximal D-segs:

cumul = max = 0; start = 1;

for (i = 1; i  N; i++) {

cumul += s[i]; 

if (cumul  max) 

{max = cumul; end = i;}

if (cumul  0 or cumul  max + D or i == N) {

if (max  S) 

{print start, end, max; }

max = cumul = 0; start = end = i + 1; /* NO BACKTRACKING 

NEEDED! */

}

}
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• So more biologically relevant problem is also 

computationally simpler!

• what are appropriate S and D? 

– mainly an empirical question (based on known 

examples); altho

• interpretation via 2-state HMM (next slide) can be useful

• Karlin-Altschul theory tells when they are ‘statistically 

significant’
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D-segments & 2-state HMMs

• Consider 2-state HMM 

– states 1 & 2, transition probs a11, a12, a21, a22

– observed symbols {r}, emission probs {e1(r)}, {e2(r)}

• Define 

scores s(r) = log(e2(r) a22/(e1(r) a11))

S = −D = log(a11a22/(a21a12))

• Then if S > 0, the maximal D-segments in a sequence 

(ri)i =1, n are the state-2 segments in the Viterbi parse.

• So via D-segment algorithm can get Viterbi parse in just 
one pass through the sequence!

• can allow for non-.5 initiation probs by starting cumul at 
non-zero value
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• For HW 3,  implement D-segment 

algorithm to find CNVs

– data: next-gen read alignments to genome

– observed symbols are counts of # read starts at 

each position (0, 1, 2,  3)

– 2 states: non-dup, dup (dup has twice as many 

read starts per base as non-dup state)

– emission probs given by Poisson dist’n with 

approp mean

– transition probs set empirically
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CNVs & Read Depth

• CNV = ‘copy number variant’– e.g. region that is single 

copy in reference sequence but duplicated in sample

• One way to detect: map reads from sample onto 

reference, look for regions of atypical coverage depth

‘Single-copy’ in sample 

and reference
multi-copy in sample



D-Segments – concluding remarks

• Powerful tool for analyzing ‘linear’ data

– Single sequences (incl. motifs, numerical data)

– Fixed alignment

• Strengths:

– Very simple to program

– Very fast, even for mammalian genomes

• Main limitation:

– Only allows two types of segments (‘target’ and 

‘background’)

• Essentially a generalization of 2-state HMMs

• multi-state HMMs are more flexible
18
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Biology involves probabilities, 

at several levels:

• Fundamental laws of nature

• Mutations (imperfect replication)

• Transmission of DNA from parent to 

offspring in populations of individuals

• Random aspects of environment
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Key Physical Laws Governing 

Living Organisms

• Individual atoms & molecules: 

– quantum mechanics / quantum electrodynamics

• Systems of molecules: 

– statistical mechanics / 2d law of thermodynamics

These fundamental laws are essentially probabilistic!

“The true logic of this world is in the calculus of probabilities” 
– James Clerk Maxwell

“I cannot believe that God plays dice with the cosmos” –
Albert Einstein; nonetheless two of his three great 1905 
papers dealt with statistical aspects of nature (photoelectric 
effect & Brownian motion)!
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Probability Models of Sequences

• Sample questions in genome sequence analysis:

– Is this sequence a splice site?

– Is this sequence part of the coding region of a gene?

– Are these two sequences evolutionarily related?

– Does this sequence show evidence of selection?

• Computational analysis can’t answer:

– only generates hypotheses

which must ultimately be tested by experiment. 

• But hypotheses should 

– have some reasonable chance of being correct, and 

– carry indication of reliability.
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• We use probability models of sequences to address 

such questions. 

• Not the only approach, but usually the most 

powerful, because 

– seqs are products of evolutionary process which is itself

probabilistic

– want to detect biological “signal” against “noise” of 

background sequence or mutations.



• “All models are wrong; some models are useful.”  

– George Box

• “What is simple is always wrong. What is not is 

unusable.” – Paul Valery
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