Today's Lecture

- Probability models for sequences
- Failure of equal frequency assumption
- Neutralist vs selectionist interpretations
- Comparing probability models: likelihood ratios
 - Hypothesis testing

Basic Probability Theory Concepts

- A *sample space S* is set of all possible outcomes of a conceptual, repeatable experiment.
 - $-/S/<\infty$ in most of our examples.
 - e.g. S = all possible sequences of a given length.
- Elements of *S* are called *sample points*.
 - e.g. a particular seq = outcome of "experiment" of extracting seq of specified type from a genome.
- A *probability distribution P* on *S* assigns non-neg real number P(s) to each $s \in S$, such that

$$\sum_{s \in S} P(s) = 1$$

 $(\text{So } 0 \le P(s) \le 1 \quad \forall s)$

- Intuitively, P(s) = fraction of times one would get *s* as result of the expt, if repeated many times.

- A *probability space* (*S*,*P*) is a sample space *S* with a prob dist'n *P* on *S*.
- Prob dist'n on *S* is sometimes called a *probability model* for *S*, particularly if several dist'ns are being considered.
 - Write models as M_1, M_2 , probabilities as $P(s \mid M_1)$, $P(s \mid M_2)$.
 - e.g.
 - M_1 = prob dist'n for splice site seqs,
 - M_2 = prob dist'n for "background" (arbitrary genomic) seqs.

Basic Probability Theory Concepts (cont'd)

- An *event E* is a criterion that is true or false for each *s*∈*S*.
 - defines a subset of S (sometimes also denoted E).

-P(E) is defined to be $\sum_{s|E \text{ is true}} P(s)$.

• Events $E_1, E_2, ..., E_n$ are *mutually exclusive* if no two of them are true for the same point;

- then $P(E_1 \text{ or } E_2 \text{ or } \dots \text{ or } E_n) = \sum_{1 \le i \le n} P(E_i)$.

• If $E_1, E_2, ..., E_n$ are also *exhaustive*, i.e. every *s* in *S* satisfies E_i for some *i*, then $\sum_{1 \le i \le n} P(E_i) = 1$.

• For events *E* and *H*, the *conditional probability* of *E* given *H*, is

 $P(E \mid H) \equiv P(E \text{ and } H) / P(H)$

- (= prob that both *E* and *H* are true, given *H* is true) - undefined if P(H) = 0.
- *E* and *H* are (*statistically*) *independent* if P(E) = P(E | H)

(i.e. prob. *E* is true doesn't depend on whether *H* is true); or equivalently

P(E and H) = P(E)P(H).

Probabilities on Sequences

- Let *S* = space of DNA or protein sequences of length *n*. Possible assumptions for assigning probabilities to *S*:
 - *Equal frequency assumption:* All residues are equally probable at any position;
 - $P(E_r^{(i)}) = P(E_q^{(i)})$ for any two residues *r* and *q*,

- where $E_r^{(i)}$ means residue *r* occurs at position *i*, then

• Since for fixed *i* the $E_r^{(i)}$ are mutually exclusive and exhaustive,

 $P(E_r^{(i)}) = 1 / |A|$

where A = residue alphabet

 $P(E_r^{(i)}) = 1/20$ for proteins, 1/4 for DNA).

- *Independence assumption*: whether or not a residue occurs at a given position is independent of residues at other positions.

- Given above assumptions, the probability of the sequence s = ACGCG
 - (in the space S of all length 5 sequences) is calculated by considering 5 events:
 - Event 1 is that first nuc is A.
 - Event 2 is that 2^d nuc is C.
 - Event 3 is that 3^d nuc is G.
 - Event 4 is that 4th nuc is C.
 - Event 5 is that 5th nuc is G.

Probability = .25.

- Probability = .25.
- Probability = .25.

Probability
$$= .25$$
.

Probability = .25.

By independence assumption, prob of all 5 events occurring is the product $(.25)^5 = 1/1024$.

Since s is the only sequence satisfying all 5 conditions, P(s)= 1/1024.

• More generally, under equal freq and indep assumptions,

prob of nuc sequence of length $n = .25^n$, prob of protein sequence of length $n = .05^n$ in the space *S* of length *n* sequences. Failure of Equal Frequency Assumption for (Real) DNA

- For most organisms, the nucleotide composition is significantly different from .25 for each nucleotide, e.g.:
 - *H. influenza* .31 A, .19 C, .19 G, .31 T
 - P. aeruginosa .17 A, .33 C, .33 G, .17 T
 - M. janaschii .34 A, .16 C, .16 G, .34 T
 - S. cerevisiae .31 A, .19 C, .19 G, .31 T
 - C. elegans .32 A, .18 C, .18 G, .32 T
 - H. sapiens .29 A, .21 C, .21 G, .29 T

- Note approximate symmetry: $A \cong T, C \cong G$,
 - even though we're counting nucs on just one strand.
 - Expect *exact* equality when counting both strands
- Explanation:
 - Although individual biological features may have nonsymmetric composition (local *asymmetry*),
 - usually features are distributed approx *randomly* w.r.t. strand,
 - so local asymmetries *cancel*, yielding overall symmetry.

General Hypotheses Regarding Unequal Frequency

- Neutralist hypothesis: *mutation bias* e.g. due to nucleotide pool composition
- Selectionist hypothesis: *selection*
 - selection on (many) particular nucleotides
 - selection on mutational bias mechanisms

Comparing Alternative Probability Models

- We will want to consider more than one model at a time, in following situations:
 - To differentiate between two or more hypotheses about a sequence
 - To generate increasingly refined probability models that are progressively more accurate

- First situation arises in testing biological assertion, e.g. "is this a coding sequence?"
 - Compare two models:
 - 1. model associated with a hypothesis H_{coding} ,
 - assigns each sequence the prob of observing it under expt of drawing a coding sequence at random from genome
 - 2. model associated with a hypothesis $H_{noncoding}$,
 - assigns each sequence the prob of observing it under expt of drawing a non-coding sequence at random

Likelihood Ratios

• The *likelihood* of a model *M* given an observation *s* is

 $L(M \mid s) = P(s \mid M)$

This is *not* the *probability* of the model! – (the sum over all models is not 1).

• The *likelihood ratio* (*LR*) of two models M_a and M_0 is given by $LR(M_a, M_0 \mid s) = \frac{L(M_a \mid s)}{L(M_0 \mid s)}$

The numerator and denominator may both be very small!

• The *log likelihood ratio* (*LLR*) is the logarithm of the likelihood ratio.

Simple Hypothesis Testing

- Suppose we wish to decide between two models:
 - M_a (the *alternative hypothesis*), and
 - M_0 (the *null hypothesis*)

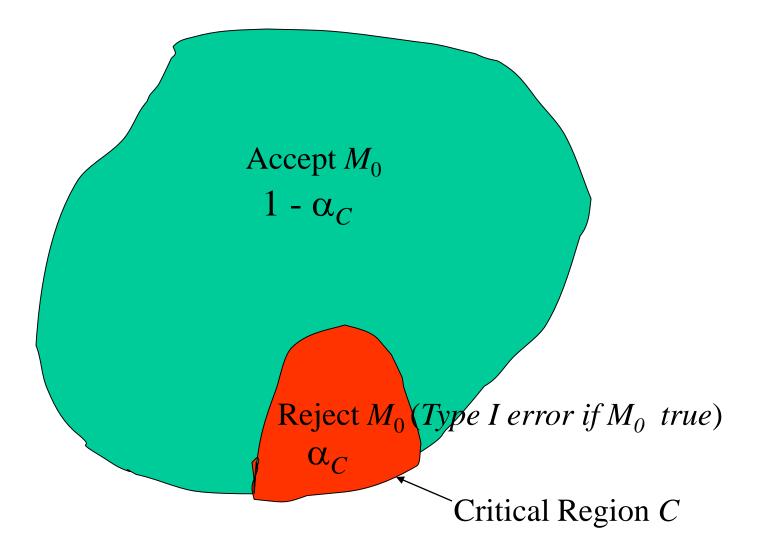
using an observation s from a sample space S. (e.g.

- *s* a sequence,
- $-M_a$ a site model
- M_0 a "background" (non-site) model.
- Strategy:
 - choose a subset $C \subset S$, called the *critical region* for the comparison.
 - If s falls within C, reject M_0 (accept M_a),
 - otherwise accept M_0 (reject M_a).

Types of Errors with Hypothesis Test

- a *Type I error* occurs if we reject M_0 when it is true.
 - For a given critical region *C*, the prob of committing a Type I error is denoted α_C $\alpha_C = P(C \mid M_0) = \sum_{s \in C} P(s \mid M_0)$
- α_C is called the *significance level* of the test

Sample Space S – probabilities under M_0

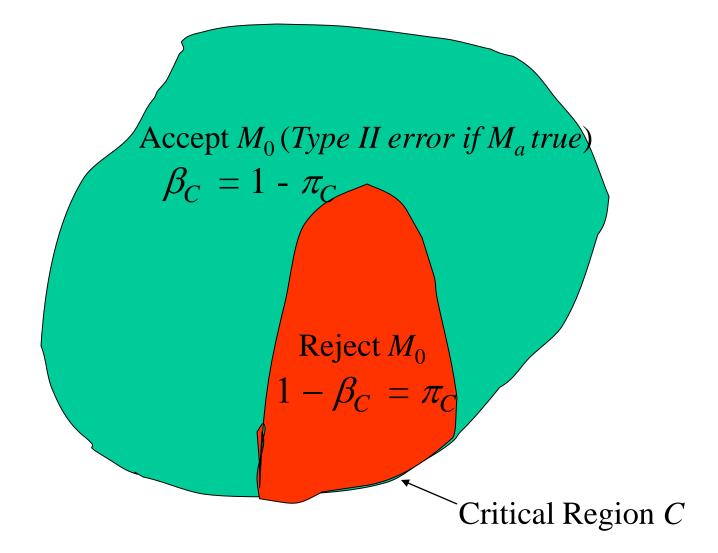


- a *Type II error* occurs if we accept M_0 when it is false.
 - For a given *C*, prob of committing a Type II error is denoted β_C

$$\beta_C = \sum_{s \notin C} P(s \mid M_a) = 1 - P(C \mid M_a)$$

• $\pi_C = 1 - \beta_C$ is called the *power* of the test.

Sample Space S – probabilities under M_a



- Designing a test involves a tradeoff between significance and power
 - smaller *C* gives smaller Type I error but larger Type II error (lower power).