
Today’s Lecture

• Probability models for sequences

• Failure of equal frequency assumption

• Neutralist vs selectionist interpretations

• Comparing probability models: likelihood 

ratios

– Hypothesis testing 
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Basic Probability Theory Concepts

• A sample space S is set of all possible outcomes of a 
conceptual, repeatable experiment. 

– |S| <  in most of our examples. 

– e.g. S = all possible sequences of a given length. 

• Elements of S are called sample points. 

– e.g. a particular seq = outcome of “experiment” of extracting seq 
of specified type from a genome.

• A probability distribution P on S assigns non-neg real 
number P(s) to each s S, such that 

sS P(s) = 1  

(So 0  P(s)  1  s )

– Intuitively, P(s) = fraction of times one would get s as result of the 
expt, if repeated many times.
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• A probability space (S,P) is a sample space S with a 

prob dist’n P on S.

• Prob dist’n on S is sometimes called a probability 

model for S, particularly if several dist’ns are being 

considered. 

– Write models as M1, M2 , probabilities as P(s | M1), 

P(s | M2). 

– e.g. 

• M1 = prob dist’n for splice site seqs,  

• M2  = prob dist’n for “background” (arbitrary genomic) seqs.
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Basic Probability Theory Concepts 

(cont’d)

• An event E is a criterion that is true or false for each

sS. 

– defines a subset of S (sometimes also denoted E). 

– P(E) is defined to be s|E is true P(s).

• Events E1, E2 , ... , En are mutually exclusive if no 

two of them are true for the same point; 

– then P(E1 or E2 or ... or En) = 1i n P(Ei). 

• If E1, E2 , ... , En are also exhaustive, i.e. every s in S

satisfies Ei for some i, then 1i n P(Ei) = 1.
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• For events E and H, the conditional probability of E
given H, is

P(E | H)  P(E and H) / P(H) 

(= prob that both E and H are true, given H is true) 

– undefined if P(H) = 0.

• E and H are (statistically) independent if 
P(E) = P(E | H) 

(i.e. prob. E is true doesn’t depend on whether H is true);

or equivalently 

P(E and H) = P(E)P(H).
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Probabilities on Sequences

• Let S = space of DNA or protein sequences of length n. 

Possible assumptions for assigning probabilities to S:

– Equal frequency assumption: All residues are equally probable at 

any position; 

• P(Er
(i)) = P(Eq

(i)) for any two residues r and q, 

– where Er
(i) means residue r occurs at position i, then 

• Since for fixed i the Er
(i) are mutually exclusive and exhaustive, 

P(Er
(i)) = 1 / |A| 

where A = residue alphabet

P(Er
(i)) = 1/20 for proteins, 1/4 for DNA).

– Independence assumption: whether or not a residue occurs at a 

given position is independent of residues at other positions.
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• Given above assumptions, the probability of the sequence 

s = ACGCG

(in the space S of all length 5 sequences) is calculated by 
considering 5 events:

– Event 1 is that first nuc is A.    Probability = .25. 

– Event 2 is that 2d nuc is C.      Probability = .25. 

– Event 3 is that 3d nuc is G.       Probability = .25. 

– Event 4 is that 4th nuc is C.      Probability = .25. 

– Event 5 is that 5th nuc is G.      Probability = .25.

By independence assumption, prob of all 5 events occurring 
is the product (.25)5 = 1/1024. 

Since s is the only sequence satisfying all 5 conditions, P(s) 
= 1/1024.
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• More generally, under equal freq and indep 
assumptions, 

prob of nuc sequence of length n =  .25n,

prob of protein sequence of length n =  .05n 

in the space S of length n sequences.
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Failure of Equal Frequency 

Assumption for (Real) DNA

• For most organisms, the nucleotide composition is 
significantly different from .25 for each nucleotide, 
e.g.:

– H. influenza .31 A, .19 C, .19 G, .31 T

– P. aeruginosa .17 A, .33 C, .33 G, .17 T

– M. janaschii .34 A, .16 C, .16 G, .34 T

– S. cerevisiae .31 A, .19 C, .19 G, .31 T

– C. elegans .32 A, .18 C, .18 G, .32 T

– H. sapiens .29 A, .21 C, .21 G, .29 T
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• Note approximate symmetry: A  T, C  G, 

– even though we’re counting nucs on just one strand. 

– Expect exact equality when counting both strands

• Explanation: 

– Although individual biological features may have non-
symmetric composition (local asymmetry), 

– usually features are distributed approx randomly w.r.t. 
strand, 

– so local asymmetries cancel, yielding overall 
symmetry.
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General Hypotheses Regarding 

Unequal Frequency

• Neutralist hypothesis:  mutation bias 

– e.g. due to nucleotide pool composition

• Selectionist hypothesis: selection

– selection on (many) particular nucleotides

– selection on mutational bias mechanisms

– …



12

Comparing Alternative 

Probability Models

• We will want to consider more than one model at a 

time, in following situations:

– To differentiate between two or more hypotheses about 

a sequence

– To generate increasingly refined probability models 

that are progressively more accurate
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• First situation arises in testing biological assertion, 

e.g. “is this a coding sequence?” 

– Compare two models:

1. model associated with a hypothesis Hcoding, 

– assigns each sequence the prob of observing it under expt of 

drawing a coding sequence at random from genome

2. model associated with a hypothesis Hnoncoding, 

– assigns each sequence the prob of observing it under expt of 

drawing a non-coding sequence at random
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Likelihood Ratios
• The likelihood of a model M given an observation 

s is

L(M | s) = P(s | M)

This is not the probability of the model! – (the sum 
over all models is not 1).

• The likelihood ratio (LR) of two models Ma and 
M0 is given by

The numerator and denominator may both be very 
small! 

• The log likelihood ratio (LLR) is the logarithm of 
the likelihood ratio.
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Simple Hypothesis Testing

• Suppose we wish to decide between two models:

– Ma (the alternative hypothesis), and 

– M0 (the null hypothesis) 

using an observation s from a sample space S. (e.g. 

– s a sequence, 

– Ma a site model

– M0 a “background” (non-site) model. 

• Strategy: 

– choose a subset C  S, called the critical region for the 
comparison. 

– If s falls within C, reject M0 (accept Ma), 

– otherwise accept M0 (reject Ma).
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Types of Errors with Hypothesis Test

• a Type I error occurs if we reject M0 when it is 
true. 

– For a given critical region C, the prob of 
committing a Type I error is denoted C

C = P(C | M0) = sC P(s | M0)

• C is called the significance level of the test



17

Sample Space S – probabilities under M0

Reject M0 (Type I error if M0 true)

C

1 - C

Critical Region C

Accept M0
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• a Type II error occurs if we accept M0 when it 
is false. 

– For a given C, prob of committing a Type II error 
is denoted C

C = sC P(s | Ma) = 1 - P(C | Ma)

• C = 1 - C is called the power of the test. 
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Sample Space S – probabilities under Ma

Reject M0

C = 1 - C

Accept M0 (Type II error if Ma true)

Critical Region C

1 - C = C
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• Designing a test involves a tradeoff between 
significance and power 

– smaller C gives smaller Type I error but larger 
Type II error (lower power).


