
Today’s Lecture

• Likelihood ratios & Neyman-Pearson

lemma

• Sequence alignment and evolution

• Edit graph & alignment algorithms

– Smith-Waterman algorithm

1

2

Likelihood Ratios
• The likelihood of a model M given an observation

s is

L(M | s) = P(s | M)

This is not the probability of the model! – (the sum
over all models is not 1).

• The likelihood ratio (LR) of two models Ma and
M0 is given by

The numerator and denominator may both be very
small!

• The log likelihood ratio (LLR) is the logarithm of
the likelihood ratio.

)|(

)|(
)|,(

0

0
sML

sML
sMMLR a

a =

3

Simple Hypothesis Testing

• Suppose we wish to decide between two models:

– Ma (the alternative hypothesis), and

– M0 (the null hypothesis)

using an observation s from a sample space S. (e.g.

– s a sequence,

– Ma a site model

– M0 a “background” (non-site) model.

• Strategy:

– choose a subset C  S, called the critical region for the
comparison.

– If s falls within C, reject M0 (accept Ma),

– otherwise accept M0 (reject Ma).

4

Types of Errors with Hypothesis Test

• a Type I error occurs if we reject M0 when it is
true.

– For a given critical region C, the prob of
committing a Type I error is denoted C

C = P(C | M0) = sC P(s | M0)

• C is called the significance level of the test

5

Sample Space S – probabilities under M0

Reject M0 (Type I error if M0 true)

C

1 - C

Critical Region C

Accept M0

6

• a Type II error occurs if we accept M0 when it
is false.

– For a given C, prob of committing a Type II error
is denoted C

C = sC P(s | Ma) = 1 - P(C | Ma)

• C = 1 - C is called the power of the test.

7

Sample Space S – probabilities under Ma

Reject M0

C = 1 - C

Accept M0 (Type II error if Ma true)

Critical Region C

1 - C = C

8

• Designing a test involves a tradeoff between
significance and power

– smaller C gives smaller Type I error but larger
Type II error (lower power).

9

Likelihood Ratio Tests

• A likelihood ratio test of models Ma and M0 is a

hypothesis test of the two models, with critical

region C defined by

C = CL = {s | LR(Ma, M0 | s)  L}

for some non-negative constant L, the cutoff value.

10

• Neyman-Pearson lemma motivates use of the

likelihood ratio as an optimal discriminator, or

“score”

– even in contexts where we aren’t explicitly testing

hypotheses.

• any monotonic function f(LR) of likelihood ratio

has equivalent optimality properties

– because defines the same set of critical regions:

LR(Ma, M0 | s)  L  f(LR(Ma, M0 | s))  f(L)

• convenient to take f to be the log function, in

which case we get the log likelihood ratio.

11

Neyman-Pearson lemma

Let Ma and M0 be two models, and CL the critical region
defined by a likelihood ratio test of Ma vs. M0 with

– cutoff value L,

– significance level L, and

– power L = 1 - L.

Then if C is any other critical region, we have

– If C < L , then C < L (and C > L)

– If C = L , then C  L (and C  L)

In other words, the likelihood ratio test with significance
level L is the most powerful test

– (has the lowest type II error rate)

with that significance level.

12

x0 y0 z0

CΛ C

xa ya za

CΛ C

xa  Λx0
za < Λz0

M0 probabilities

Ma probabilities

C < Λ

 z0 < x0

 Λ z0 < Λ x0

 za < xa

 C < Λ

Idea of Neyman-Pearson lemma proof:

13

▪ Proof: Suppose C < L .Then

Subtract from both sides the terms involving

s  C  CL This leaves

(1)

) |()|(00 MsPMsP
Cs Cs

 
  L



) |()|(0

\ \

0 MsPMsP
CCs CCs

 
L L 



14

• By definition of the likelihood ratio test, for

any observation s,

• From this, it follows that

(2)

and

(3)

) |()|(
1

0

\ \

MsPMsP
CCs CCs

a 
L L 


L

) |(
1

)|(
\ \

0 a

CCs CCs

MsPMsP 
L L  L



)|()|(0MsPMsPCs a L L

15

• Combining (2), (1), and (3)

so (cancelling the common factor 1 / L)

so, adding in the terms corresponding to s  C  CL

i.e C < L The other part of the lemma (C  L

if C = L) is proved similarly.

) |()|(
\ \

a

CCs CCs

a MsPMsP 
L L 



) |()|(a

Cs Cs

a MsPMsP 
  L



) |()|(
1

0

\ \

MsPMsP
CCs CCs

a 
L L 


L

) |(
1

)|(
\ \

0 a

CCs CCs

MsPMsP 
L L  L



16

Aligning sequences

• Major uses in genome analysis:

– To find relationship between sequences from “same” genome

• (still need to allow for discrepancies – due to errors/polymorphisms)

E.g.

• finding gene structure by aligning cDNA to genome

• assembling sequence reads in genome sequencing project

• NextGen applications: “Resequencing”, ChIPSeq, etc

– To detect evolutionary relationships:

• illuminates function of distantly related sequences under selection

• finds corresponding positions in neutrally evolving sequence

– to illuminate mutation process

– helps find non-neutrally evolving (functional) regions

17

• Often we’re interested in details of alignment

– (i.e. precisely which residues are aligned),

but

• sometimes only interested in whether alignment

score is large enough to imply that sequences

are likely to be related

18

Sequences & evolution

• Similar sequences of sufficient length usually

have a common evolutionary origin

– i.e. are homologous

• For a pair of sequences

– “% similarity” makes sense

– “% homology” doesn’t

• In alignment of two homologous sequences

– differences mostly represent mutations that occurred

in one or both lineages, but

– Not all mutations are inferrable from the alignment

19

...accgaatcgggtcccgtta...

...accgaatcaggtcccgtta...

...accgaatcaggtcccgtca...

...acagaatcgggtcccgtta...

...acagaatcaggtcccgtta...

...acagaatcagggtcccgtta...

...acagaatcagggtcccgtta...

...accgaatcagg-tcccgtca...

...acagaatcagggtcccgtta... ...accgaatcaggtcccgtca...

ONLY OBSERVED SEQUENCES

(Observed) ALIGNMENT:

(may not be unique!)

(Unobserved) MUTATION HISTORY (in general, this is not

even inferrable!):

20

Complications

• Parallel & back mutations

 estimating total # of mutations requires

statistical modelling

• Insertion/deletion, & segmental mutations

 finding the correct alignment can be

problematic (‘gap attraction’)

-- even in closely related sequences!

21

Sequence alignments correspond to

paths in a DAG!

22

The Edit Graph for a Pair of Sequences

A C G T T G A A T G A C C C A

G

C

A

T

G

A

C

G

A

23

• The edit graph is a DAG.

– Except on the boundaries, the nodes have in-degree and

out-degree both 3.

• The depth structure is as shown on the next slide.

Child of node of depth n always has

– depth n + 1 (for a horizontal or vertical edge), or

– depth n + 2 (for a diagonal edge).

24

A C G T T G A A T G A C C C A

G

C

A

T

G

A

C

G

A

Depth Structure

25

• Paths in edit graph correspond to alignments of
subsequences

– each edge on path corresponds to alignment column.

– diagonal edges correspond to column of two aligned
residues;

– horizontal edges correspond to column with

• residue in 1st (top, horizontal) sequence

• gap in the 2d (vertical) sequence

– vertical edges correspond to column with

• residue in 2d sequence

• gap in 1st sequence

26

A C G T T G A A T G A C C C A

G

C

A

T

G

A

C

G

A

aCGTTGAATGAccca
gCAT-GAC-GA

Above path corresponds to following alignment (w/ lower case letters

considered unaligned):

27

Weights on Edit Graphs

• Edge weights correspond to scores on alignment columns.

• Highest weight path corresponds to highest-scoring

alignment for that scoring system.

• Weights may be assigned using

– a substitution score matrix,

• assigns a score to each possible pair of residues occurring as alignment

column

and

– a gap penalty

• assigns a score to column consisting of residue opposite a gap.

– Example for protein sequences: BLOSUM62

28

BLOSUM62 Score Matrix
GAP -12 -2

 A R N D C Q E G H I L K M F P S T W Y V B Z X *

A 4 -1 -2 -2 0 -1 -1 0 -2 -1 -1 -1 -1 -2 -1 1 0 -3 -2 0 -2 -1 0 -4

R -1 5 0 -2 -3 1 0 -2 0 -3 -2 2 -1 -3 -2 -1 -1 -3 -2 -3 -1 0 -1 -4

N -2 0 6 1 -3 0 0 0 1 -3 -3 0 -2 -3 -2 1 0 -4 -2 -3 3 0 -1 -4

D -2 -2 1 6 -3 0 2 -1 -1 -3 -4 -1 -3 -3 -1 0 -1 -4 -3 -3 4 1 -1 -4

C 0 -3 -3 -3 9 -3 -4 -3 -3 -1 -1 -3 -1 -2 -3 -1 -1 -2 -2 -1 -3 -3 -2 -4

Q -1 1 0 0 -3 5 2 -2 0 -3 -2 1 0 -3 -1 0 -1 -2 -1 -2 0 3 -1 -4

E -1 0 0 2 -4 2 5 -2 0 -3 -3 1 -2 -3 -1 0 -1 -3 -2 -2 1 4 -1 -4

G 0 -2 0 -1 -3 -2 -2 6 -2 -4 -4 -2 -3 -3 -2 0 -2 -2 -3 -3 -1 -2 -1 -4

H -2 0 1 -1 -3 0 0 -2 8 -3 -3 -1 -2 -1 -2 -1 -2 -2 2 -3 0 0 -1 -4

I -1 -3 -3 -3 -1 -3 -3 -4 -3 4 2 -3 1 0 -3 -2 -1 -3 -1 3 -3 -3 -1 -4

L -1 -2 -3 -4 -1 -2 -3 -4 -3 2 4 -2 2 0 -3 -2 -1 -2 -1 1 -4 -3 -1 -4

K -1 2 0 -1 -3 1 1 -2 -1 -3 -2 5 -1 -3 -1 0 -1 -3 -2 -2 0 1 -1 -4

M -1 -1 -2 -3 -1 0 -2 -3 -2 1 2 -1 5 0 -2 -1 -1 -1 -1 1 -3 -1 -1 -4

F -2 -3 -3 -3 -2 -3 -3 -3 -1 0 0 -3 0 6 -4 -2 -2 1 3 -1 -3 -3 -1 -4

P -1 -2 -2 -1 -3 -1 -1 -2 -2 -3 -3 -1 -2 -4 7 -1 -1 -4 -3 -2 -2 -1 -2 -4

S 1 -1 1 0 -1 0 0 0 -1 -2 -2 0 -1 -2 -1 4 1 -3 -2 -2 0 0 0 -4

T 0 -1 0 -1 -1 -1 -1 -2 -2 -1 -1 -1 -1 -2 -1 1 5 -2 -2 0 -1 -1 0 -4

W -3 -3 -4 -4 -2 -2 -3 -2 -2 -3 -2 -3 -1 1 -4 -3 -2 11 2 -3 -4 -3 -2 -4

Y -2 -2 -2 -3 -2 -1 -2 -3 2 -1 -1 -2 -1 3 -3 -2 -2 2 7 -1 -3 -2 -1 -4

V 0 -3 -3 -3 -1 -2 -2 -3 -3 3 1 -2 1 -1 -2 -2 0 -3 -1 4 -3 -2 -1 -4

B -2 -1 3 4 -3 0 1 -1 0 -3 -4 0 -3 -3 -2 0 -1 -4 -3 -3 4 1 -1 -4

Z -1 0 0 1 -3 3 4 -2 0 -3 -3 1 -1 -3 -1 0 -1 -3 -2 -2 1 4 -1 -4

X 0 -1 -1 -1 -2 -1 -1 -1 -1 -1 -1 -1 -1 -1 -2 0 0 -2 -1 -1 -1 -1 -1 -4

* -4 1

29

A C G T T G A A T G A C C C A

G

C

A

T

G

A

C

G

A

aCGTTGAATGAccca
gCAT-GAC-GA

Above path corresponds to following alignment (w/ lower case letters

considered unaligned):

30

Alignment algorithms

• Smith-Waterman algorithm to find highest scoring
alignment

= dynamic programming algorithm to find highest-
weight path

– Is a local alignment algorithm:

• finds alignment of subsequences rather than the full sequences.

• Can process nodes in any order in which parents
precede children. Commonly used alternatives are

– depth order

– row order

– column order

