
Today’s Lecture

• Likelihood ratios & Neyman-Pearson 

lemma

• Sequence alignment and evolution

• Edit graph & alignment algorithms

– Smith-Waterman algorithm
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Likelihood Ratios
• The likelihood of a model M given an observation 

s is

L(M | s) = P(s | M)

This is not the probability of the model! – (the sum 
over all models is not 1).

• The likelihood ratio (LR) of two models Ma and 
M0 is given by

The numerator and denominator may both be very 
small! 

• The log likelihood ratio (LLR) is the logarithm of 
the likelihood ratio.
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Simple Hypothesis Testing

• Suppose we wish to decide between two models:

– Ma (the alternative hypothesis), and 

– M0 (the null hypothesis) 

using an observation s from a sample space S. (e.g. 

– s a sequence, 

– Ma a site model

– M0 a “background” (non-site) model. 

• Strategy: 

– choose a subset C  S, called the critical region for the 
comparison. 

– If s falls within C, reject M0 (accept Ma), 

– otherwise accept M0 (reject Ma).
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Types of Errors with Hypothesis Test

• a Type I error occurs if we reject M0 when it is 
true. 

– For a given critical region C, the prob of 
committing a Type I error is denoted C

C = P(C | M0) = sC P(s | M0)

• C is called the significance level of the test
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Sample Space S – probabilities under M0

Reject M0 (Type I error if M0 true)

C

1 - C

Critical Region C

Accept M0



6

• a Type II error occurs if we accept M0 when it 
is false. 

– For a given C, prob of committing a Type II error 
is denoted C

C = sC P(s | Ma) = 1 - P(C | Ma)

• C = 1 - C is called the power of the test. 
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Sample Space S – probabilities under Ma

Reject M0

C = 1 - C

Accept M0 (Type II error if Ma true)

Critical Region C

1 - C = C
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• Designing a test involves a tradeoff between 
significance and power 

– smaller C gives smaller Type I error but larger 
Type II error (lower power).
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Likelihood Ratio Tests

• A likelihood ratio test of models Ma and M0 is a 

hypothesis test of the two models, with critical 

region C defined by

C = CL = {s | LR(Ma, M0 | s)  L}

for some non-negative constant L, the cutoff value.
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• Neyman-Pearson lemma motivates use of the 

likelihood ratio as an optimal discriminator, or 

“score” 

– even in contexts where we aren’t explicitly testing 

hypotheses.

• any monotonic function f(LR) of  likelihood ratio 

has equivalent optimality properties 

– because defines the same set of critical regions: 

LR(Ma, M0 | s)  L  f(LR(Ma, M0 | s))  f(L)

• convenient to take f to be the log function, in 

which case we get the log likelihood ratio.
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Neyman-Pearson lemma

Let Ma and M0 be two models, and CL the critical region 
defined by a likelihood ratio test of Ma vs. M0 with 

– cutoff value L, 

– significance level L, and 

– power L = 1 - L. 

Then if C is any other critical region, we have

– If C < L , then C < L (and C > L )

– If C = L , then C  L  (and C  L ) 

In other words, the likelihood ratio test with significance 
level L is the most powerful test 

– (has the lowest type II error rate) 

with that significance level.



12

x0 y0 z0

CΛ C

xa ya za

CΛ C

xa   Λx0
za < Λz0

M0  probabilities

Ma probabilities

C < Λ

 z0 < x0

 Λ z0 < Λ x0

 za < xa

 C < Λ

Idea of Neyman-Pearson lemma proof:
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▪ Proof: Suppose C < L .Then 

Subtract from both sides the terms involving 

s  C  CL This leaves 

(1)
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• By definition of the likelihood ratio test, for 

any observation s,

• From this, it follows that

(2)

and

(3)
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• Combining (2), (1), and (3)

so (cancelling the common factor 1 / L)

so, adding in the terms corresponding to s  C  CL

i.e C < L The other part of the lemma (C  L

if C = L) is proved similarly.
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Aligning sequences

• Major uses in genome analysis:

– To find relationship between sequences from “same” genome 

• (still need to allow for discrepancies – due to errors/polymorphisms)

E.g.  

• finding gene structure by aligning cDNA to genome

• assembling sequence reads in genome sequencing project

• NextGen applications: “Resequencing”, ChIPSeq, etc

– To detect evolutionary relationships:

• illuminates function of distantly related sequences under selection

• finds corresponding positions in neutrally evolving sequence 

– to illuminate mutation process 

– helps find non-neutrally evolving (functional) regions
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• Often we’re interested in details of alignment 

– (i.e. precisely which residues are aligned), 

but

• sometimes only interested in whether alignment 

score is large enough to imply that sequences 

are likely to be related
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Sequences & evolution

• Similar sequences of sufficient length usually 

have a common evolutionary origin 

– i.e. are homologous

• For a pair of sequences

– “% similarity” makes sense 

– “% homology” doesn’t

• In alignment of two homologous sequences

– differences mostly represent mutations that occurred 

in one or both lineages, but 

– Not all mutations are inferrable from the alignment
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...accgaatcgggtcccgtta...

...accgaatcaggtcccgtta...

...accgaatcaggtcccgtca...

...acagaatcgggtcccgtta...

...acagaatcaggtcccgtta...

...acagaatcagggtcccgtta...

...acagaatcagggtcccgtta...

...accgaatcagg-tcccgtca...

...acagaatcagggtcccgtta... ...accgaatcaggtcccgtca...

ONLY OBSERVED SEQUENCES

(Observed)  ALIGNMENT: 

(may not be unique!)

(Unobserved) MUTATION HISTORY (in general, this is not 

even inferrable!):
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Complications

• Parallel & back mutations 

 estimating total # of mutations requires 

statistical modelling

• Insertion/deletion, & segmental mutations 

 finding the correct alignment can be 

problematic (‘gap attraction’)

-- even in closely related sequences!
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Sequence alignments correspond to 

paths in a DAG!
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The Edit Graph for a Pair of Sequences
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• The edit graph is a DAG. 

– Except on the boundaries, the nodes have in-degree and 

out-degree both 3.

• The depth structure is as shown on the next slide. 

Child of node of depth n always has 

– depth n + 1 (for a horizontal or vertical edge), or 

– depth n + 2 (for a diagonal edge).
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Depth Structure
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• Paths in edit graph correspond to alignments of 
subsequences 

– each edge on path corresponds to alignment column. 

– diagonal edges correspond to column of two aligned 
residues; 

– horizontal edges correspond to column with 

• residue in 1st (top, horizontal) sequence

• gap in the 2d (vertical) sequence

– vertical edges correspond to column with 

• residue in 2d sequence

• gap in 1st sequence
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A C G T T G A A T G A C C C A

G

C

A

T

G

A

C

G

A

aCGTTGAATGAccca
gCAT-GAC-GA

Above path corresponds to following alignment (w/ lower case letters 

considered unaligned):
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Weights on Edit Graphs

• Edge weights correspond to scores on alignment columns. 

• Highest weight path corresponds to highest-scoring 

alignment for that scoring system. 

• Weights may be assigned using 

– a substitution score matrix, 

• assigns a score to each possible pair of residues occurring as alignment 

column

and

– a gap penalty

• assigns a score to column consisting of residue opposite a gap. 

– Example for protein sequences:  BLOSUM62
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BLOSUM62 Score Matrix
GAP -12 -2 

   A  R  N  D  C  Q  E  G  H  I  L  K  M  F  P  S  T  W  Y  V  B  Z  X  * 

A  4 -1 -2 -2  0 -1 -1  0 -2 -1 -1 -1 -1 -2 -1  1  0 -3 -2  0 -2 -1  0 -4  

R -1  5  0 -2 -3  1  0 -2  0 -3 -2  2 -1 -3 -2 -1 -1 -3 -2 -3 -1  0 -1 -4  

N -2  0  6  1 -3  0  0  0  1 -3 -3  0 -2 -3 -2  1  0 -4 -2 -3  3  0 -1 -4  

D -2 -2  1  6 -3  0  2 -1 -1 -3 -4 -1 -3 -3 -1  0 -1 -4 -3 -3  4  1 -1 -4  

C  0 -3 -3 -3  9 -3 -4 -3 -3 -1 -1 -3 -1 -2 -3 -1 -1 -2 -2 -1 -3 -3 -2 -4  

Q -1  1  0  0 -3  5  2 -2  0 -3 -2  1  0 -3 -1  0 -1 -2 -1 -2  0  3 -1 -4  

E -1  0  0  2 -4  2  5 -2  0 -3 -3  1 -2 -3 -1  0 -1 -3 -2 -2  1  4 -1 -4  

G  0 -2  0 -1 -3 -2 -2  6 -2 -4 -4 -2 -3 -3 -2  0 -2 -2 -3 -3 -1 -2 -1 -4  

H -2  0  1 -1 -3  0  0 -2  8 -3 -3 -1 -2 -1 -2 -1 -2 -2  2 -3  0  0 -1 -4  

I -1 -3 -3 -3 -1 -3 -3 -4 -3  4  2 -3  1  0 -3 -2 -1 -3 -1  3 -3 -3 -1 -4  

L -1 -2 -3 -4 -1 -2 -3 -4 -3  2  4 -2  2  0 -3 -2 -1 -2 -1  1 -4 -3 -1 -4  

K -1  2  0 -1 -3  1  1 -2 -1 -3 -2  5 -1 -3 -1  0 -1 -3 -2 -2  0  1 -1 -4  

M -1 -1 -2 -3 -1  0 -2 -3 -2  1  2 -1  5  0 -2 -1 -1 -1 -1  1 -3 -1 -1 -4  

F -2 -3 -3 -3 -2 -3 -3 -3 -1  0  0 -3  0  6 -4 -2 -2  1  3 -1 -3 -3 -1 -4  

P -1 -2 -2 -1 -3 -1 -1 -2 -2 -3 -3 -1 -2 -4  7 -1 -1 -4 -3 -2 -2 -1 -2 -4  

S  1 -1  1  0 -1  0  0  0 -1 -2 -2  0 -1 -2 -1  4  1 -3 -2 -2  0  0  0 -4  

T  0 -1  0 -1 -1 -1 -1 -2 -2 -1 -1 -1 -1 -2 -1  1  5 -2 -2  0 -1 -1  0 -4  

W -3 -3 -4 -4 -2 -2 -3 -2 -2 -3 -2 -3 -1  1 -4 -3 -2 11  2 -3 -4 -3 -2 -4  

Y -2 -2 -2 -3 -2 -1 -2 -3  2 -1 -1 -2 -1  3 -3 -2 -2  2  7 -1 -3 -2 -1 -4  

V  0 -3 -3 -3 -1 -2 -2 -3 -3  3  1 -2  1 -1 -2 -2  0 -3 -1  4 -3 -2 -1 -4  

B -2 -1  3  4 -3  0  1 -1  0 -3 -4  0 -3 -3 -2  0 -1 -4 -3 -3  4  1 -1 -4  

Z -1  0  0  1 -3  3  4 -2  0 -3 -3  1 -1 -3 -1  0 -1 -3 -2 -2  1  4 -1 -4  

X  0 -1 -1 -1 -2 -1 -1 -1 -1 -1 -1 -1 -1 -1 -2  0  0 -2 -1 -1 -1 -1 -1 -4  

* -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4  1  
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aCGTTGAATGAccca
gCAT-GAC-GA

Above path corresponds to following alignment (w/ lower case letters 

considered unaligned):
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Alignment algorithms

• Smith-Waterman algorithm to find highest scoring 
alignment 

= dynamic programming algorithm to find highest-
weight path

– Is a local alignment algorithm: 

• finds alignment of subsequences rather than the full sequences.

• Can process nodes in any order in which parents 
precede children. Commonly used alternatives are

– depth order

– row order 

– column order


