Today's Lecture

- Improved scoring of pairwise alignments
 - Affine gap penalties
 - Profiles
- Smith-Waterman special cases

Above path corresponds to following alignment (w/ lower case letters considered unaligned):

aCGTTGAATGAccca gCAT-GAC-GA

- *Two strategies to allow* allow partial non-independence while preserving dynamic programming framework:
 - Enhance graph
 - Allow scores to depend on position within the sequence (i.e. *not* just on a BLOSUM-type score matrix)
 - so some substitutions (of same residues) or gaps penalized more heavily than others

Gap Penalties

TNAVAHVD----DMPNAL YEAAIQLQVTGVVVTDATL

- Usual scoring scheme assigns same penalty *g* to each gap edge, so
 - weights on extended gaps of size *s* are *linear* in *s*, i.e.
 - total gap penalty $gap(s) = s \times g$.
 - e.g. in above example, if each g = -6, total penalty on gap would be

$$gap(5) = 5 \times -6 = -30$$

Gap Penalties

- Would like more flexible gap penalties:
- In proteins, insertions & deletions are rare;
 - but when occur, often consist of several residues, because
 - they are in regions (loops) tolerant of length changes
 - at DNA level, indels in protein coding sequence usually a multiple of 3 nucleotides
 - otherwise, would change reading frame
- In noncoding sequence,
 - the most common indel size is 1
 - *but* larger indels occur much more frequently than multiple independent single-base indels

- Can allow arbitrary *convex* gap penalties
 - $-gap(s+t) \ge gap(s) + gap(t)$, where s and t are (integer) gap sizes
 - by extending edit graph:
 - add edges corresponding to *arbitrary length* gaps from each vertex to each horizontally or vertically downstream vertex
 - (convexity condition prevents favoring two adjacent short gaps over a single long gap).
 - Time complexity now O(MN(M+N))
 - often unacceptable for moderate *M*, *N*.
 - Also: how to choose appropriate weights? (need data to estimate!)

Affine Gap Penalties

- *Affine* gap penalties:
 - less general than arbitrary convex penalties, but
 - more general than linear penalties.
- Two parameters:
 - -gap opening penalty g_o
 - -gap extension penalty g_e
- gap(n) (penalty for size n gap) is then

$$g_o + n g_e = g_i + (n-1) g_e$$

where the gap *initiating* penalty $g_i = g_o + g_e$

- Example: for BLOSUM62, good penalties are $-g_i = -12$,
 - $-g_e = -2$

These perform *much* better than linear penalty

- (e.g. g = -6)

- N.B. Durbin *et al.* reverse g_i and g_o - g_i is called the 'gap opening' penalty
- Can obtain affine penalties using extension of edit graph, retaining complexity *O(MN)*:

Edit Graph for Affine Gap Penalties

Double # vertices, creating left-right pair in place of each original vertex. Each cell looks like this:

each left vertex has out-degree and in-degree = 2

each right vertex has out-degree and in-degree = 3

• gap-opening edges from left vertex to right vertex of each pair : weight g_o

• gap extension edges going horizontally or vertically between right vertices : weight g_e

• diagonal edges originate from either left or right vertex, but always go to a left vertex.

- Paths in the augmented graph still correspond to alignments
 - $\operatorname{can} \exists$ more than one path for same alignment
 - but highest scoring paths still give best alignments
- Score assigned to size *n* gap is g_o + n g_e
 i.e. affine penalty
- Smith-Waterman-Gotoh algorithm

Profiles (position-specific scoring)

The Edit Graph for a Pair of Sequences

• *Profiles: Position-specific* scoring scheme specifying score of each possible substitution at each position of a sequence

c											
Cons		8 A.	С	D	Ε	\mathbf{T}	V	W	Ŷ	Open	Ext
	G	7	-14	- 1	-5	6	4	-34	-22	28	28
Ţ	Р	5	-26	4	1	1	- 4	-48	-31	28	28
	\mathbf{L}	-18	-31	-40	-35	-16	13	-31	-9	100	100
1	T	7	-21	-4	-6	10	- 3	-38	-28	100	100
	E	6	-37	11	12	2	-10	-61	-38	100	100
Ŧ	A	5	-34	3	4	1	-8	-48	-34	100	100
	Ε	Ó	- 53	26	31	- 5	-29	-60	-42	100	100
	R	-11	-45	-11	-13	-3	-21	-2	- 3.3	100	100
	Т	4	-28	-2	-1	8	7	-51	-24	100	100
	М	-7	-47	-6	-6	-3	-6	-35	-26	100	100
	v	0	~20	-22	-36	2	41	-56	-27	100	100
	К	-9	-44	-1.1	-11	0	-5	-29	-31	100	100
	N	5	-27	7	6	8	-11	-40	-32	100	100
	A,	7	-27	- 4	-6	4	5	-46	-31	100	100
	W	-47	-69	-58	-60	-40	-49	139	- 6	100	100
	G	11	-31	5	1	3	-5	-65	-43	100	100
	К	- 2	-46	5	8	-1	-23	-49	-45	100	100
	V	-4	-23	-27	-45	-2	34	-48	-1.8	100	100
	L	- 3	-9	-6	-5	-3	3	- 3	-1	26	26
	Ν	- 4	-26	3	2	-4	-19	-31	- 9	26	26
	A	- 4	-16	0	1	2	-12	-40	-10	26	26
	н	0	-30	14	10	3	-15	-41	-21	100	100
	I	-2	-20	-18	-23	-1	17	-50	-11	100	100

From R. Luthy, I. Xenarios and P. Bucher, Improving the sensitivity of the sequence profile method *Protein Sci.* 3: 139-146 (1994)

- This is an important improvement!
 - reflects fact that different parts of sequence may evolve at different rates
- e.g. in proteins,
 - internal core region of tightly packed residues, or active sites of enzyme, are more highly conserved;
 - surface residues, particularly in loops, often less conserved.
 - so scores tend to be correlated (high scores in core, lower on surface)

Rates of amino acid exchange in mammalian proteins by burial status

Copyright restrictions may apply.

- PSIBLAST approach:
 - initially compare query sequence to database sequences (using BLOSUM-type scoring matrix),
 - build profile using initial matches
 - rescan database using profile
- Optimal choice of
 - substitution matrix,
 - gap penalties, or
 - profiles

comes from LLR based on alignment data (target vs background)

Smith-Waterman special cases

- Various special cases are optimal path problems for *subgraphs* of edit graph:
- *Gap-free* alignments correspond to paths confined to a diagonal of edit graph

- (i.e. subgraph without horizontal & vertical edges).

• Find *perfectly* matching segments using weights +1 for identical residue pair,

 $-\infty$ (or large negative penalty) for mismatches or gaps.

Less efficient than "sorting pointers" method from lecture 1 / HW1.

The Edit Graph for a Pair of Sequences

- Find *imperfect internal repeats* by searching edit graph of sequence against itself
 - i.e. the same sequence labels columns and rows

above (& not including) the main diagonal:

- if include main diagonal, best path will be identity match to self
- complexity = $O(N^2)$ where N = sequence length.

Graph for finding imperfect internal repeats:

