
1

• Algorithm generalities

• Finding exact matches in sequences using

suffix arrays

• Hashtables

Lecture 1.2

2

Algorithms – Some General Remarks

• The most widely used algorithms are the oldest

– e.g. sorting lists, traversing trees, dynamic programming.

The challenge in CMB is usually not finding new algorithms,

but rather

– finding biologically appropriate applications of old ones.

• Often prefer

– suboptimal but easy-to-program algorithm over more optimal one

– or space-efficient algorithm over time-efficient one.

• Probabilities are important in

– interpreting results

– guiding search

The most powerful analyses generally involve probabilistic models,
rather than deterministic ones.

Genomes are big

but computers are fast!

• Typical laptop clock speed: ~ 1 Ghz

– Potentially billions of CPU instructions / sec

• Important practical consideration in dealing
with genome-scale data sets: compared to
CPU operations,

– non-cache memory accesses are very slow
(100s of cycles)

– disk accesses are even slower (1000s of cycles)

– for both, random (non-sequential) accesses are
much slower than sequential accesses

3

Exponents & logarithms

• loga(a
b) = b, aloga(b) = b (log inverts exp)

• ab+c = ab ac loga(df) = loga(d) + loga(f)

• (ab)c = abc loga(d
f) = f loga(d)

• a0 = 1 loga(1) = 0

• a1 = a loga(a) = 1

• a-b = 1 / ab loga(1 / d) = -loga(d)

• logc(b) = loga(b) / loga(c)

4

• 4 = 22

• 45 = 210 = 1024 ≈ 103

• 410 = 220 ≈ 106

• 415 = 230 ≈ 109

• 4n = # DNA words of length n

• log4(109) ≈ 15

5

66

Finding perfectly matching

subsequences of a sequence

• Idea (much more efficient than ‘brute force’

approach):

– suffix array (Manber & Myers, 1990)

– make list of positions in sequence

– each position ‘points to’ a suffix

= subsequence starting at that position & extending to end of

sequence

– lexicographically sort list of pointers

– process the list: adjacent entries are “maximally

agreeing”

Suffix array step 1:

List of Pointers to Suffixes
ACCTGCACTAAACCGTACACTGGGTTCAAGAGATTTCCC

ACCTGCACTAAACCGTACACTGGGTTCAAGAGATTTCCC
CCTGCACTAAACCGTACACTGGGTTCAAGAGATTTCCC
CTGCACTAAACCGTACACTGGGTTCAAGAGATTTCCC
TGCACTAAACCGTACACTGGGTTCAAGAGATTTCCC
GCACTAAACCGTACACTGGGTTCAAGAGATTTCCC
CACTAAACCGTACACTGGGTTCAAGAGATTTCCC
ACTAAACCGTACACTGGGTTCAAGAGATTTCCC
CTAAACCGTACACTGGGTTCAAGAGATTTCCC
TAAACCGTACACTGGGTTCAAGAGATTTCCC
AAACCGTACACTGGGTTCAAGAGATTTCCC
AACCGTACACTGGGTTCAAGAGATTTCCC
ACCGTACACTGGGTTCAAGAGATTTCCC

.

.

.

p1
p2
p3
p4
p5
p6
p7
p8
p9
p10
p11
p12

7

• The ‘pointers’ are just positions

(represented by integers) – not (necessarily)

memory addresses

• Do not store the substrings!

8

Suffix array step 2:

View as Strings to be Compared
ACCTGCACTAAACCGTACACTGGGTTCAAGAGATTTCCC

ACCTGCACTAAACCGTACACTGGGTTCAAGAGATTTCCC
CCTGCACTAAACCGTACACTGGGTTCAAGAGATTTCCC
CTGCACTAAACCGTACACTGGGTTCAAGAGATTTCCC
TGCACTAAACCGTACACTGGGTTCAAGAGATTTCCC
GCACTAAACCGTACACTGGGTTCAAGAGATTTCCC
CACTAAACCGTACACTGGGTTCAAGAGATTTCCC
ACTAAACCGTACACTGGGTTCAAGAGATTTCCC
CTAAACCGTACACTGGGTTCAAGAGATTTCCC
TAAACCGTACACTGGGTTCAAGAGATTTCCC
AAACCGTACACTGGGTTCAAGAGATTTCCC
AACCGTACACTGGGTTCAAGAGATTTCCC
ACCGTACACTGGGTTCAAGAGATTTCCC

.

.

.

p1
p2
p3
p4
p5
p6
p7
p8
p9
p10
p11
p12

9

Suffix array step 3:

Sort the Pointers Lexicographically
ACCTGCACTAAACCGTACACTGGGTTCAAGAGATTTCCC

.

.

AAACCGTACACTGGGTTCAAGAGATTTCCC
AACCGTACACTGGGTTCAAGAGATTTCCC
AAGAGATTTCCC
ACACTGGGTTCAAGAGATTTCCC

CAAGAGATTTCCC

ACCTGCACTAAACCGTACACTGGGTTCAAGAGATTTCCC
ACCGTACACTGGGTTCAAGAGATTTCCC

ACTGGGTTCAAGAGATTTCCC
ACTAAACCGTACACTGGGTTCAAGAGATTTCCC

AGAGATTTCCC
AGATTTCCC
ATTTCCC

.

p10
p11
p28
p17
p12
p1
p7
p19
p29
p31
p33
p27

10

1111

Finding Matching Subsequences

Using the Sorted List of Pointers

• Perfectly matching subsequences

– (more precisely – the pointers to the starts of those

subsequences)

are “near” each other in the sorted list

• For a given subsequence, a longest perfect match

to it is adjacent to it in the sorted list

– (there may be other, equally long matches which are

not adjacent, but they are nearby).

1212

(Average Case) Complexity Analysis

• If N = sequence length, sorting can be done with

– O(Nlog(N)) comparisons,

– each requiring O(log(N)) steps on average,

for an overall complexity of O(N(log(N))2).

– (Processing the sorted list requires an additional O(N) steps which does not
affect the overall complexity).

• Manber & Myers (1990) have more efficient algorithm (O(Nlog(N)))

• several O(N) algorithms are now known – but the best
implementations are not as fast as O(Nlog(N)) algorithms, even for
very large genomes!!

•  other, older O(N) methods (‘suffix trees’), but these are
– much less space efficient,

– harder to program, and

– (probably) slower in practice

1313

• Can use to find matches among multiple sequences

by concatenating them (+ reverse complements)

– e.g. sequence assembly of a large # of reads

• HW #1 asks you to apply this algorithm to find:

– longest perfectly matching subsequences in 2 genomic

sequences & their reverse complements.

• much faster than an O(N2) algorithm (e.g. Smith-

Waterman, or even BLAST), but

• limited to finding exact matches

Hashtables

• Similar purpose: to store locations of subsequences

in a way that allows quick finding of matches

• But using subsequences (or words) of a fixed

length w

• Idea: work thru the sequence a base at a time.

– for the word starting at position p :

• Convert the word into a table location

• If that location is already occupied, find a nearby unoccupied

one

• Store p, and (if necessary) enough additional information to

reconstruct the word

14

• Advantages (relative to suffix arrays):

– only O(N) to construct table, O(1) to lookup an

entry

• Disadvantages:

– less memory efficient

– requires choice of a fixed word length w

– (slightly) harder to program

15

