_ecture 1.2

Algorithm generalities

Finding exact matches In sequences using
suffix arrays

Hashtables

Algorithms — Some General Remarks

« The most widely used algorithms are the oldest
— e.g. sorting lists, traversing trees, dynamic programming.
The challenge in CMB is usually not finding new algorithms,
but rather
— finding biologically appropriate applications of old ones.
« Often prefer
— suboptimal but easy-to-program algorithm over more optimal one
— or space-efficient algorithm over time-efficient one.
» Probabilities are important in
— Interpreting results
— guiding search
The most powerful analyses generally involve probabilistic models,
rather than deterministic ones.

Genomes are big
but computers are fast!

 Typical laptop clock speed: ~ 1 Ghz
— Potentially billions of CPU instructions / sec

 Important practical consideration in dealing
with genome-scale data sets: compared to
CPU operations,

— non-cache memory accesses are very slow
(100s of cycles)

— disk accesses are even slower (1000s of cycles)

— for both, random (non-sequential) accesses are
much slower than sequential accesses

Exponents & logarithms

log,(a) = b, al°ea®) =p (log inverts exp)
ab*c=aPac log,(df) =log.(d) + log,(f)
(@) =a log,(df) = f log,(d)

a’=1 log,(1) =0

al=a log.(a) =1

aP=1/a> log,(1/d)=-log.(d)
l0g,(b) = log,(b) / log,(c)

4 =22

4> =210=1024 = 103

410 = 220 ~ 1()6

415 = 230 ~ 1()°

4" = # DNA words of length n
log,(10%) ~ 15

Finding perfectly matching
subseguences of a sequence

* ldea (much more efficient than ‘brute force’
approach):
— suffix array (Manber & Myers, 1990)
— make list of positions in sequence

— each position ‘points to’ a suffix

= subsequence starting at that position & extending to end of
sequence

— lexicographically sort list of pointers

— process the list: adjacent entries are “maximally
agreeing”

Suffix array step 1:
List of Pointers to Suffixes

ACCTGCACTAAACCGTACACTGGGTTCAAGAGATTTCCC

ACCTGCACTAAACCGTACACTGGGTTCAAGAGATTTCCC
CCTGCACTAAACCGTACACTGGGTTCAAGAGATTTCCC
CTGCACTAAACCGTACACTGGGTTCAAGAGATTTCCC
TGCACTAAACCGTACACTGGGTTCAAGAGATTTCCC
GCACTAAACCGTACACTGGGTTCAAGAGATTTCCC
CACTAAACCGTACACTGGGTTCAAGAGATTTCCC
ACTAAACCGTACACTGGGTTCAAGAGATTTCCC
CTAAACCGTACACTGGGTTCAAGAGATTTCCC
TAAACCGTACACTGGGTTCAAGAGATTTCCC
AAACCGTACACTGGGTTCAAGAGATTTCCC
AACCGTACACTGGGTTCAAGAGATTTCCC
ACCGTACACTGGGTTCAAGAGATTTCCC

* The ‘pointers’ are just positions
(represented by integers) — not (necessarily)
memory addresses

Do not store the substrings!

Suffix array step 2:

View as Strings to be Compared

ACCTGCACTAAACCGTACACTGGGTTCAAGAGATTTCCC

ACCTGCACTAAACCGTACACTGGGTTCAAGAGATTTCCC
CCTGCACTAAACCGTACACTGGGTTCAAGAGATTTCCC
CTGCACTAAACCGTACACTGGGTTCAAGAGATTTCCC
TGCACTAAACCGTACACTGGGTTCAAGAGATTTCCC
GCACTAAACCGTACACTGGGTTCAAGAGATTTCCC
CACTAAACCGTACACTGGGTTCAAGAGATTTCCC
ACTAAACCGTACACTGGGTTCAAGAGATTTCCC
CTAAACCGTACACTGGGTTCAAGAGATTTCCC
TAAACCGTACACTGGGTTCAAGAGATTTCCC
AAACCGTACACTGGGTTCAAGAGATTTCCC
AACCGTACACTGGGTTCAAGAGATTTCCC
ACCGTACACTGGGTTCAAGAGATTTCCC

Suffix array step 3:

Sort the Pointers Lexicographically

P1o
P11
P2s
P17
P12
P1

P19
P29
P31
P33
P27

ACCTGCACTAAACCGTACACTGGGTTCAAGAGATTTCCC

AAACCGTACACTGGGTTCAAGAGATTTCCC
AACCGTACACTGGGTTCAAGAGATTTCCC
AAGAGATTTCCC
ACACTGGGTTCAAGAGATTTCCC
ACCGTACACTGGGTTCAAGAGATTTCCC
ACCTGCACTAAACCGTACACTGGGTTCAAGAGATTTCCC
ACTAAACCGTACACTGGGTTCAAGAGATTTCCC
ACTGGGTTCAAGAGATTTCCC

AGAGATTTCCC

AGATTTCCC

ATTTCCC

CAAGAGATTTCCC

10

Finding Matching Subseguences
Using the Sorted List of Pointers

 Perfectly matching subsequences

— (more precisely — the pointers to the starts of those
subsequences)

are ‘“‘near’ each other in the sorted list

 For a given subsequence, a longest perfect match
to It I1s adjacent to it in the sorted list

— (there may be other, equally long matches which are
not adjacent, but they are nearby).

11

(Average Case) Complexity Analysis

If N = sequence length, sorting can be done with
— O(Nlog(N)) comparisons,
— each requiring O(log(N)) steps on average,

for an overall complexity of O(N(log(N))?).

— (Processing the sorted list requires an additional O(N) steps which does not
affect the overall complexity).

Manber & Myers (1990) have more efficient algorithm (O(Nlog(N)))

several O(N) algorithms are now known — but the best
Implementations are not as fast as O(Nlog(N)) algorithms, even for
very large genomes!!

3 other, older O(N) methods (‘suffix trees’), but these are

— much less space efficient,
— harder to program, and
— (probably) slower in practice

12

Can use to find matches among multiple sequences
by concatenating them (+ reverse complements)

— e.g. sequence assembly of a large # of reads

HW #1 asks you to apply this algorithm to find:

— longest perfectly matching subsequences in 2 genomic
sequences & their reverse complements.

much faster than an O(N?) algorithm (e.g. Smith-
Waterman, or even BLAST), but

limited to finding exact matches

13

Hashtables

 Similar purpose: to store locations of subsequences
In a way that allows quick finding of matches

 But using subsequences (or words) of a fixed
length w

» ldea: work thru the sequence a base at a time.

— for the word starting at position p :
« Convert the word into a table location

« If that location is already occupied, find a nearby unoccupied
one

« Store p, and (if necessary) enough additional information to
reconstruct the word

14

« Advantages (relative to suffix arrays):

— only O(N) to construct table, O(1) to lookup an
entry

 Disadvantages:
— less memory efficient
— requires choice of a fixed word length w
— (slightly) harder to program

15

