Lecture 10

• Reducing memory

– Linear space algorithms

• Finding internal repeats

• Genome alignment

aCGTTGAATGAccca Above path corresponds to following alignment (w/ lower case letters considered unaligned):

gCAT-GAC-GA

• To reconstruct best path, need "traceback" pointer to immediate predecessor of *v* in best path:

$$
T(v) = \begin{cases} v & w(v) = 0 \\ \arg \max_{u \in \text{parents}(v)} (w(u) + w((u,v)) & w(v) \neq 0 \end{cases}
$$

- in preceding graph, *T*(*v*) is the *parent* on *red edge* coming into *v*
	- if more than one such edge, pick one at random;
	- if no such edge, $T(v) = v$
- Sometimes useful to record *beginning* of best path:

$$
B(v) = \begin{cases} v & w(v) = 0 \\ B(T(v)) & w(v) \neq 0 \end{cases}
$$

Linear Space Algorithm for Full Alignment Reconstruction

- Space complexity 10^{12} (for pairwise genomescale alignments) is unacceptable.
- Following algorithm (based on principle of *divide-and-conquer*) trades
	- \sim 2-fold increase in time
		- Maybe! Will save on cache misses …

for

- reducing space requirement to $O(\min(M,N))$:
- [rarely used in practice however instead one typically tries to work with "well-anchored" pieces smaller than 1 Mb]

"Forward-backward" method to find where highest-scoring path crosses midline of edit graph:

- do dynamic programming scans
	- from left bdry to midline,
	- from right bdry to midline.
- Then max $w(v) + w'(v)$ on midline *v*
- is highest weight of any path through midline, and

$$
M(v) = \underset{v \text{ on midline}}{\arg \max} w(v) + w'(v)
$$

is vertex where intersects midline.

• Iterate on subgraphs.

Inverted WDAGs

- Can "invert" any WDAG: create graph with
	- same vertices & edge weights
	- direction of each edge reversed
- inverted WDAG has same paths & path weights, but in reverse order
- inverting does not necessarily "invert" depth structure

Scanning WDAG in Both Directions

- Order vertices $(v_1, v_2, ..., v_n)$ with parents preceding children.
	- Find *w*(*v*), highest weight of path ("from left") ending at *v*.
- Reverse order $(v_n, v_{n-1}, ..., v_1)$ has parents before children in *inverted* graph
	- Find *w'*(*v*), highest weight of path ("from right") ending at *v*.
- Then
	- (joining path from left ending at *v*, to reverse of path from right ending at *v*),

see that $w(v) + w'(v)$ is highest weight of any path going *through v*.

• This construction will also arise later, with HMMs.

Linear space algorithm (cont'd)

- Now do 2nd pass, *only scanning part of graph where highest weight path must lie:*
	- bounded by midline, and line through *M*(*v*) (or just midline, if doesn't cross it):
	- only $\frac{1}{2}$ as many edges and vertices as in 1st pass
	- Now store location where crosses midline *of each subgraph*.

Iterate!

- In 3rd pass, need
	- $-$ ½ # edges and vertices in 2nd pass,
	- $-$ i.e. only $\frac{1}{4}$ # in 1st pass.
- etc. until down to subgraphs consisting of single row or column
- can piece together full path from midline intersections in each pass
- Total effective search space: $1 + \frac{1}{2} + \frac{1}{4} + ... = 2$, i.e. only *twice* the initial search.

Alternate method – not using inverted WDAG

• Idea: in first pass, record where highest-weight path ending at v crosses *midline* of graph:
 $\begin{bmatrix} 0 & \text{v} \end{bmatrix}$ lies to left of midline, or $v = T(v)$ at *v* crosses *midline* of graph:

 $\overline{\mathcal{L}}$ \vert $=\left\{$ $\big| 0 \qquad v \text{ lies to left of midline, or } v = T(v)$ (V lies to lett of midline, V lies on midline
($T(v)$) V lies to right of midline lieson midline (v) $M(T(v))$ *v* $M(v) = \begin{cases} v & v \end{cases}$

where *T*(*v*) is parent of *v* through which best path ending at *v* passes.

- Note that (as when recording beginning of path, *B*(*v*))
	- only need retain *M*(*v*) until all children of *v* processed (or for current best *v*);
	- so requires *O*(min(*M*,*N*)) space, for appropriate processing order.
- In subsequent pass, only scan part of graph where highest weight path must lie $\left\{ M(T(v)) \right.$
where $T(v)$ is parapasses.
te that (as whe
only need retain
current best v);
so requires $O(m)$
subsequent pas
ight path must
bounded by mid
doesn't cross it):
	- bounded by midline, and line through *M*(*v*) (or just midline, if

Linear Space – Variant Algorithms

- Can store more intermediate points (e.g. have *n* lines, record where crosses each one).
	- increases required space, but
	- decreases time $(1/n$ instead of $\frac{1}{2}$ for subsequent pass.
- Choose *n* to minimize time, given the space available.

Finding (imperfect) internal repeats

- Search edit graph of *sequence against itself*
	- i.e. the same sequence labels columns and rows

above (& not including) the main diagonal:

- if include main diagonal, best path will be identity match to self
- \sim complexity = $O(N^2)$ where N = sequence length.

Graph for finding imperfect internal repeats:

- Find *short tandem repeats* (e.g. microsatellites, minisatellites):
	- scan a *band* just above main diagonal.
	- Complexity = $O(kN)$ where k is width of the band.
	- Manageable even for large *N,* if *k* small.

Graph for finding short tandem repeats:

ACACACACACACACAC ACACACACACACACAC

Genome alignment

- Challenges:
	- Size
	- Repeated sequence
		- Duplications
		- Transposable elements
		- Processed pseudogenes
	- Other segmental changes
		- Deletions
		- Inversions, translocations
	- Mutation rate variation
- Segmental changes don't conform to edit graph framework!

Strategy

- Find (many!) word-nucleated local alignments
- Word size *w*: sensitivity vs specificity
	- Example: human $(\sim 3 \text{ Gb})$ vs mouse $(\sim 2.5 \text{ Gb})$
		- ~70% identity in homologous regions
		- For each human word, expect $5 \times 10^9/4^w$ chance occurrences in mouse (+ rev complement)
		- Total matches: $15 \times 10^{18} / 4^w$
			- Want *w large enough* for this to be manageable
		- Prob that the *homologous* word matches: .7*^w*
			- once every $(1 / .7)^w = 1.43^w$ bp
			- Want *w small enough* to ensure ≥ 1 match within homologous regions
		- $w = 15$: $\sim 15 \times 10^9$ matches; 1 per 214 homologous bp
- Avoid high-frequency words
- Avoid nucleating in known repeats & duplications

– But extend into them!

- Use appropriate score matrix & gap penalties!
	- Otherwise, get junk alignments or portions thereof
- Finally, identify *chains* of *compatible* local alignments
	- Ideally, catalogue the segmental changes that have occurred (duplications, transposable element insertions etc)