
Lecture 10

• Reducing memory

– Linear space algorithms

• Finding internal repeats

• Genome alignment

1

2

A C G T T G A A T G A C C C A

G

C

A

T

G

A

C

G

A

aCGTTGAATGAccca
gCAT-GAC-GA

Above path corresponds to following alignment (w/ lower case letters

considered unaligned):

3

• To reconstruct best path, need “traceback” pointer to
immediate predecessor of v in best path:

– in preceding graph, T(v) is the parent on red edge coming
into v

• if more than one such edge, pick one at random;

• if no such edge, T(v) = v

• Sometimes useful to record beginning of best path:

+

=
=

0)())(()((max arg

0)(
)(

)parents(

vwu,v w uw

vwv
vT

vu

=
=

0)())((

0)(
)(

vwvTB

vwv
vB

4

Linear Space Algorithm for

Full Alignment Reconstruction

• Space complexity 1012 (for pairwise genome-

scale alignments) is unacceptable.

• Following algorithm (based on principle of

divide-and-conquer) trades

– 2-fold increase in time

• Maybe! Will save on cache misses …

for

– reducing space requirement to O(min(M,N)):

• [rarely used in practice however – instead one typically tries to

work with “well-anchored” pieces smaller than 1 Mb]

5

• do dynamic programming scans

– from left bdry to midline,

– from right bdry to midline.

• Then

is highest weight of any path through midline, and

is vertex where intersects midline.

• Iterate on subgraphs.

)(')(max
midlineon

vwvw
v

+

)(')(max arg)(
midlineon

vwvwvM
v

+=

“Forward-backward” method to find where

highest-scoring path crosses midline of edit graph:

6

scan from left scan from right

midline

7

Inverted WDAGs

• Can “invert” any WDAG: create graph with

– same vertices & edge weights

– direction of each edge reversed

• inverted WDAG has same paths & path

weights, but in reverse order

• inverting does not necessarily “invert” depth

structure

8

Scanning WDAG in Both Directions

• Order vertices (v1, v2, ..., vn) with parents preceding
children.
– Find w(v), highest weight of path (“from left”) ending at v.

• Reverse order (vn, vn-1, ..., v1) has parents before
children in inverted graph
– Find w’(v), highest weight of path (“from right”) ending at

v.

• Then
– (joining path from left ending at v, to reverse of path from

right ending at v),

see that w(v) + w’(v) is highest weight of any path
going through v.

• This construction will also arise later, with HMMs.

9

• Now do 2nd pass, only scanning part of graph
where highest weight path must lie:
– bounded by midline, and line through M(v) (or just

midline, if doesn’t cross it):

– only ½ as many edges and vertices as in 1st pass

– Now store location where crosses midline of each
subgraph.

Linear space algorithm (cont’d)

10

Ignore in 2d pass

Ignore in 2d pass

Search in 2d pass

Search in 2d pass

midline

11

• In 3rd pass, need
– ½ # edges and vertices in 2nd pass,

– i.e. only ¼ # in 1st pass.

• etc. until down to subgraphs consisting of single row
or column

• can piece together full path from midline
intersections in each pass

• Total effective search space: 1 + ½ + ¼ + ... = 2,

i.e. only twice the initial search.

Iterate!

12

• Idea: in first pass, record where highest-weight path ending
at v crosses midline of graph:

where T(v) is parent of v through which best path ending at v
passes.

• Note that (as when recording beginning of path, B(v))

– only need retain M(v) until all children of v processed (or for
current best v);

– so requires O(min(M,N)) space, for appropriate processing order.

• In subsequent pass, only scan part of graph where highest
weight path must lie

– bounded by midline, and line through M(v) (or just midline, if
doesn’t cross it):

 =

=

midline ofright tolies))((

midlineon lies

)(or midline, ofleft tolies 0

)(

vvTM

vv

vTvv

vM

Alternate method – not using inverted WDAG

13

Ignore in 2d pass

Ignore in 2d pass

Search in 2d pass

Search in 2d pass

midline

14

Linear Space –

Variant Algorithms

• Can store more intermediate points (e.g. have n lines, record

where crosses each one).

– increases required space, but

– decreases time (1/n instead of ½) for subsequent pass.

• Choose n to minimize time, given the space available.

15

• Search edit graph of sequence against itself

– i.e. the same sequence labels columns and rows

above (& not including) the main diagonal:

– if include main diagonal, best path will be identity match to self

– complexity = O(N2) where N = sequence length.

Graph for finding imperfect

internal repeats:

Finding (imperfect) internal repeats

16

• Find short tandem repeats (e.g. microsatellites,
minisatellites):

– scan a band just above main diagonal.

– Complexity = O(kN) where k is width of the band.

– Manageable even for large N, if k small.

Graph for finding short

tandem repeats:

ACACACACACACACAC
ACACACACACACACAC

Genome alignment
• Challenges:

– Size

– Repeated sequence

• Duplications

• Transposable elements

• Processed pseudogenes

– Other segmental changes

• Deletions

• Inversions, translocations

– Mutation rate variation

• Segmental changes don’t conform to

edit graph framework!
17

Strategy
• Find (many!) word-nucleated local alignments

• Word size w: sensitivity vs specificity

– Example: human (~3 Gb) vs mouse (~2.5 Gb)

• ~70% identity in homologous regions

• For each human word, expect 5 × 109 / 4w chance

occurrences in mouse (+ rev complement)

• Total matches: 15 × 1018 / 4w

– Want w large enough for this to be manageable

• Prob that the homologous word matches: .7w

– once every (1 / .7) w = 1.43w bp

– Want w small enough to ensure ≥ 1 match within homologous

regions

• w = 15: ~15 × 109 matches; 1 per 214 homologous bp

18

• Avoid high-frequency words

• Avoid nucleating in known repeats &

duplications

– But extend into them!

• Use appropriate score matrix & gap

penalties!

– Otherwise, get junk alignments or portions

thereof

19

• Finally, identify chains of compatible local

alignments

– Ideally, catalogue the segmental changes that

have occurred (duplications, transposable

element insertions etc)

20

