Lecture 10

« Reducing memory
— Linear space algorithms

 Finding Internal repeats

« Genome alignment

A CG T T G A A T G A CC CA
NV AVAVAVANIVAVANAV AV AMAVANANAN
SANIVININIVAV VAV AN VAV VAV AN N
SRVAVAVANAVAVAVANAVANAVANAVA VAN

&% > &% > O

2% &%

L% > &% > O

2% &%

SESSESRSRELSRSS

v v v v v v v v v v v v v v v v

ARSI I
- :\::\: :\::\::\::\: :\::\::\::\: :\::\::\::\: :\::
G NN N NN NN N

SANAVAVAVAVAVAVAVAVAVANAVAVAMANY

Above path corresponds to following alignment (w/ lower case letters

aCGTTGAATGAccca
gCAT-GAC-GA

considered unaligned):

» To reconstruct best path, need “traceback” pointer to
Immediate predecessor of v In best path:

v w(v) =0

T =1 argmax (w(u) + w(u,v)) w(v)=0

| U € parents(v)

— In preceding graph, T(v) is the parent on red edge coming
Into v
« if more than one such edge, pick one at random;
 if no such edge, T(v) =v

« Sometimes useful to record beginning of best path:

3(V) Vv w(v) =0
(V)= {B(T) W(v) % 0

Linear Space Algorithm for
Full Alignment Reconstruction

« Space complexity 102 (for pairwise genome-
scale alignments) Is unacceptable.
 Following algorithm (based on principle of
divide-and-conquer) trades
— ~2-fold increase in time

* Maybe! Will save on cache misses ...

for

— reducing space requirement to O(min(M,N)):

« [rarely used in practice however — instead one typically tries to
work with “well-anchored” pieces smaller than 1 Mb]

“Forward-backward” method to find where
highest-scoring path crosses midline of edit graph:

« do dynamic programming scans
— from left bdry to midline,
— from right bdry to midline.

e Then max w(Vv) +w'(v)

v on midline

IS highest weight of any path through midline, and

M (v) = arg max w(v) + w'(v)

von midline

IS vertex where intersects midline.
* [terate on subgraphs.

—> 4—
scan from left scan from right

b

A

midline

Inverted WDAGS

* Can “invert” any WDAG: create graph with
— same vertices & edge weights
— direction of each edge reversed

* Inverted WDAG has same paths & path
weights, but in reverse order

 1verting does not necessarily “invert” depth
structure

Scanning WDAG In Both Directions

e Order vertices (vy, V,, ..., V,) With parents preceding
children.

— Find w(v), highest weight of path (“from left””) ending at v.
* Reverse order (v,, V,.1, ..., V1) has parents before
children in inverted graph

— Find w’(v), highest weight of path (“from right”) ending at
V

e Then

— (Joining path from left ending at v, to reverse of path from
right ending at v),

see that w(v) + w’(v) Is highest weight of any path
going through v.

e This construction will also arise later, with HMMSs.

Linear space algorithm (cont’d)

« Now do 2" pass, only scanning part of graph
where highest weight path must lie:

— bounded by midline, and line through M(v) (or just
midline, 1f doesn’t cross it):

— only %2 as many edges and vertices as in 15t pass

— Now store location where crosses midline of each
subgraph.

midline

Ignore in 2d pass

Ignore in 2d pass

oD
et

10

lterate!

In 3" pass, need
— Y # edges and vertices in 2" pass,
— 1.e. only % # in 15t pass.

etc. until down to subgraphs consisting of single row
or column

can piece together full path from midline
Intersections In each pass

Total effective search space: 1 + Y2+ Y4+ .. = 2,
1.e. only twice the initial search.

11

Alternate method — not using inverted WDAG

* |dea: In first pass, record where highest-weight path ending
at v crosses midline of graph:

0 v liesto leftof midline,orv =T (v)
M(v) =4V v lieson midline
M (T(v)) v liesto right of midline

where T(v) Is parent of v through which best path ending at v
passes.

 Note that (as when recording beginning of path, B(v))

— only need retain M(v) until all children of v processed (or for
current best v);

— 50 requires O(min(M,N)) space, for appropriate processing order.
* |n subsequent pass, only scan part of graph where highest
welght path must lie

— bounded by midline, and line through M(v) (or just midline, if
doesn’t cross it): 12

midline

Ignore in 2d pass

Ignore in 2d pass

oD
et

13

Linear Space —
Variant Algorithms

 Can store more intermediate points (e.g. have n lines, record
where crosses each one).

— Increases required space, but
— decreases time (1/n instead of %2) for subsequent pass.

» Choose n to minimize time, given the space available.

14

Finding (imperfect) internal repeats

 Search edit graph of sequence against itself
— I.e. the same sequence labels columns and rows

above (& not including) the main diagonal:
— If include main diagonal, best path will be identity match to self
— complexity = O(N?) where N = sequence length.

Graph for finding imperfect
Internal repeats:

15

 Find short tandem repeats (e.g. microsatellites,
minisatellites):
— scan a band just above main diagonal.
— Complexity = O(kN) where k is width of the band.
— Manageable even for large N, if k small.

N/
N

Graph for finding short
tandem repeats:

\\—\3

ACACACACACACACAC
ACACACACACACACAC 4

Genome alignment

 Challenges:
— Slze
— Repeated sequence
 Duplications
 Transposable elements
 Processed pseudogenes

— Other segmental changes
 Deletions
* Inversions, translocations

— Mutation rate variation

* Segmental changes don’t conform to
edit graph framework!

17

Strategy

* Find (many!) word-nucleated local alignments
« \Word size w: sensitivity vs specificity
— Example: human (~3 Gb) vs mouse (~2.5 Gb)

 ~70% identity in homologous regions

« For each human word, expect 5 x 10%/ 4% chance
occurrences in mouse (+ rev complement)
« Total matches: 15 x 1018/ 4w
— Want w large enough for this to be manageable
 Prob that the homologous word matches: .7%

— onceevery (1/.7)%¥=1.43"bp

— Want w small enough to ensure > 1 match within homologous
regions

« w=15: ~15 x 10° matches; 1 per 214 homologous bp

18

 Avoid high-frequency words

 Avoid nucleating in known repeats &
duplications
— But extend into them!

 Use appropriate score matrix & gap
penalties!

— Otherwise, get junk alignments or portions
thereof

19

 Finally, identify chains of compatible local
alignments
— ldeally, catalogue the segmental changes that

have occurred (duplications, transposable
element insertions etc)

20

