
Lecture 10

• Reducing memory

– Linear space algorithms

• Finding internal repeats

• Genome alignment
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Above path corresponds to following alignment (w/ lower case letters 

considered unaligned):
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• To reconstruct best path, need “traceback” pointer to 
immediate predecessor of v in best path:

– in preceding graph, T(v) is the parent on red edge coming 
into v

• if more than one such edge, pick one at random; 

• if no such edge, T(v) = v

• Sometimes useful to record beginning of best path:
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Linear Space Algorithm for 

Full Alignment Reconstruction

• Space complexity 1012 (for pairwise genome-

scale alignments) is unacceptable.

• Following algorithm (based on principle of 

divide-and-conquer) trades 

– 2-fold increase in time 

• Maybe! Will save on cache misses …

for 

– reducing space requirement to O(min(M,N)):

• [rarely used in practice however – instead one typically tries to 

work with “well-anchored” pieces smaller than 1 Mb]
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• do dynamic programming scans 

– from left bdry to midline, 

– from right bdry to midline.

• Then

is highest weight of any path through midline, and

is vertex where intersects midline.

• Iterate on subgraphs. 
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“Forward-backward” method to find where 

highest-scoring path crosses midline of edit graph:
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scan from left scan from right

midline
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Inverted WDAGs

• Can “invert” any WDAG: create graph with 

– same vertices & edge weights

– direction of each edge reversed 

• inverted WDAG has same paths & path 

weights, but in reverse order

• inverting does not necessarily “invert” depth 

structure
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Scanning WDAG in Both Directions 

• Order vertices (v1, v2, ..., vn) with parents preceding 
children. 
– Find w(v), highest weight of path (“from left”) ending at v.

• Reverse order (vn, vn-1, ..., v1) has parents before 
children in inverted graph
– Find w’(v), highest weight of path (“from right”) ending at 

v. 

• Then 
– (joining path from left ending at v, to reverse of path from 

right ending at v), 

see that w(v) + w’(v) is highest weight of any path 
going through v. 

• This construction will also arise later, with HMMs.
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• Now do 2nd pass, only scanning part of graph 
where highest weight path must lie:
– bounded by midline, and line through M(v) (or just 

midline, if doesn’t cross it): 

– only ½ as many edges and vertices as in 1st pass 

– Now store location where crosses midline of each 
subgraph.

Linear space algorithm (cont’d)
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Ignore in 2d pass

Ignore in 2d pass

Search in 2d pass

Search in 2d pass

midline
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• In 3rd pass, need 
– ½ # edges and vertices in 2nd pass, 

– i.e. only ¼ # in 1st pass.

• etc. until down to subgraphs consisting of single row 
or column

• can piece together full path from midline 
intersections in each pass

• Total effective search space: 1 + ½ + ¼ + ... = 2,

i.e. only twice the initial search.

Iterate!
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• Idea: in first pass, record where highest-weight path ending 
at v crosses midline of graph:

where T(v) is parent of v through which best path ending at v
passes.

• Note that (as when recording beginning of path, B(v)) 

– only need retain M(v) until all children of v processed (or for 
current best v); 

– so requires O(min(M,N)) space, for appropriate processing order.

• In subsequent pass, only scan part of graph where highest 
weight path must lie 

– bounded by midline, and line through M(v) (or just midline, if 
doesn’t cross it):
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Alternate method – not using inverted WDAG
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Ignore in 2d pass

Ignore in 2d pass

Search in 2d pass

Search in 2d pass

midline
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Linear Space –

Variant Algorithms

• Can store more intermediate points (e.g. have n lines, record 

where crosses each one). 

– increases required space, but 

– decreases time (1/n instead of ½) for subsequent pass.

• Choose n to minimize time, given the space available.
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• Search edit graph of sequence against itself 

– i.e. the same sequence labels columns and rows 

above (& not including) the main diagonal: 

– if include main diagonal, best path will be identity match to self

– complexity = O(N2) where N = sequence length. 

Graph for finding imperfect 

internal repeats:

Finding (imperfect) internal repeats
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• Find short tandem repeats (e.g. microsatellites, 
minisatellites): 

– scan a band just above main diagonal. 

– Complexity = O(kN) where k is width of the band.

– Manageable even for large N, if k small. 

Graph for finding short 

tandem repeats:

ACACACACACACACAC
ACACACACACACACAC



Genome alignment
• Challenges:

– Size

– Repeated sequence

• Duplications

• Transposable elements

• Processed pseudogenes

– Other segmental changes

• Deletions

• Inversions, translocations

– Mutation rate variation

• Segmental changes don’t conform to 

edit graph framework!
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Strategy
• Find (many!) word-nucleated local alignments 

• Word size w: sensitivity vs specificity 

– Example: human (~3 Gb) vs mouse (~2.5 Gb)

• ~70% identity in homologous regions

• For each human word, expect 5 × 109 / 4w chance 

occurrences in mouse (+ rev complement)

• Total matches: 15 × 1018 / 4w

– Want w large enough for this to be manageable

• Prob that the homologous word matches: .7w

– once every (1 / .7) w = 1.43w bp

– Want w small enough to ensure ≥ 1 match within homologous 

regions

• w = 15:  ~15 × 109  matches; 1 per 214 homologous bp 
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• Avoid high-frequency words

• Avoid nucleating in known repeats & 

duplications

– But extend into them!

• Use appropriate score matrix & gap 

penalties!

– Otherwise, get junk alignments or portions 

thereof
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• Finally, identify chains of compatible local 

alignments

– Ideally, catalogue the segmental changes that 

have occurred (duplications, transposable 

element insertions etc)
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