Lecture 11

« Alignment errors

— ‘Gap attraction’

« Multiple sequence alignment
— Evolutionary trees
— Higher-dimensional edit graphs
— Progressive alignment



« Major motivation for sequence alignment:

— tlluminating mutation and selection In
evolutionarily related sequences

 Accuracy of alignment matters!



(Observed) ALIGNMENT: .acagaatcagggtcccgtta...
(may not be unique!) .accgaatcagg-tcccgtcea. ..

(Unobserved) MUTATION HISTORY (in general, this is not
even inferrablel):  accqaategggteccgtta...

/

...acagaatcgggtcccgtta...
...accgaatcaggtcccgtta...
...acagaatcaggtcccgtta...
/ ...accgaatcaggtcccgtca...
..acagaatcagggtcccgtta...
/ ONLY OBSERVED SEQUENCES \
\

...acagaatcagggtcccgtta ...accgaatcaggtcccgtca...
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Complications

e Parallel & back mutations

= estimating total # of mutations requires
statistical modelling

* Insertion/deletion, & segmental mutations

= finding the correct alignment can be
problematic (‘gap attraction’)

-- even In closely related sequences!



Gap attraction

 |If true alignment is

. . .acagaatcagggtcc-gtta...
. . .aCagaatcagg-tccecgtta. ..

reported (maximume-scoring) alignment will be

...acagaatcagggtccgtta...
. . .aCagaatcaggtcccgtta. ..

(2 mismatches cost less than 2 indels)

« Similarly, if true alignment is

. . .acagaatcagggtcccgtta. ..
. . .acagaatcagg-tcc—-gtta...

reported alignment will be

. . .acagaatcagggtcccgtta. ..
. ..acagaatcagg—--tccgtta...

(size-2 indel + mismatch cost less than 2 size-1 indels)



 This iIs an issue even for highly similar
genomes!

— But worse with increasing divergence

* Ideally, report alignments with local
Indications of uncertainty

— or at least, several alignments with varying
alignment penalties

but this 1s almost never done

* Problem is ameliorated with multiple
alignments



Multiple alignments

* More sequences =>
— (potentially) more accurate alignments
— better resolution of mutations, selection

* Need > 2 sequences to polarize mutations

 An evolutionary tree relates the sequences!
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Evolutionary trees

 Binary tree with
— N leaf nodes (observed individuals)
— n,,. ancestral nodes (unobserved)

» Each ancestral node has two descendants (‘left’
and ‘right’); leaves have none

« # edges:
» #edgestarts=2n,,.
 #edge ends = n; + n,.— 1 (every node except root)
* 2 Nanc™ Mieat T Nanc — 1
* Nanc= Mieas — 1, # edges =2 Niear — 2



ancestral nodes

root node
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leaf nodes
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« Want to compute probabilities of observed
leaf sequences, given tree

« Requires considering possible evolutionary
histories
— 1.e. sequences at ancestral nodes

— # choices grows exponentially in both n_.. and
sequence length !!

» and a probability model for change along
edges
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Mutational model for tree

« Will assume independent evolution at each
sequence position

— Doesn’t allow for context effects (e.g. CpG hotspots!)
« Mutations along an edge e:

P.(s | r) = prob a residue r at beginning of e Is s
at end

» ‘Background’ residue freqs at the root:
PFOOt (r)
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 Usual assumptions:
— (for DNA ) P (s | r*) = P,(s | 1)
(N =complementary nuc)
* 50 each P_has 6 independent params

— A single, reversible, infinitesimal (~per small time
unit) mutation model P; . applies across entire tree
« P, = (P; )t where t =time along e

* Reversibility implies root can’t be uniquely placed
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Probability calculations on tree

e Glven:

1. aset of observed residues at the leaves
( a gap-free alignment column of the sequences)

2. {P(s | )} and {Poq (N}
compute prob of observed residues

o Still exponentially many (in n_,.) possibilities for
ancestral residues!

« But can use dynamic programming on a WDAG
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Evolut tree — WDAG

Each ancestral node in tree becomes 4 nodes in WDAG
— labelled with the 4 nucs

leaf nodes remain unchanged
— labelled with observed nuc

Two nodes in WDAG are connected by an edge

If corresponding tree nodes are (but reverse direction)
— weight = P(S | I) where e = tree edge, r, s = node labels
‘urnode’

— unlabelled

— 4 edges coming from the 4 root nodes
— weights = P, (1)
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urnode —

Pmm(o
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 Size of WDAG is linear in n,

—#nodes: N« +4n,. +1
— #edges: 4n,+16 (n,.—1) +4

 Edges in tree point down; in WDAG, up
— S0 WDAG ‘parents’ are below
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« Compute overall probability of leaf residues
(nucleotides) by dynamic programming on
WDAG:

* Let, for each node v, p(v) = prob of leaf nucs
below v (i.e tree-descendants, or WDAG-

ancestors, of v), given v’s nuc
Per(V) = prob of leaf nucs below and to left

Prignt(V) = prob of leaf nucs below and to right
then p(v) = Pies(V) Prigne(V)
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« Compute these values node-by-node, visiting

(WDAG-)parents before children:
— starting at leaf nodes (setting p(v) = 1), ending at urnode

pleft(V) = Zleft—u W(u; v)p(u) where
— U ranges over parent nodes to the left
- w(u, v) = weight on edge fromutov
(= mutation prob from v to u)

Similarly for pygn(v)
p(V) = pleft(v) pright(V)

— For v = urnode, view all parents as being to ‘left’ and p(v) =
pleft(V)

 p(urnode) = probability of the observed leaf nucs
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Scoring multiple alignments

Can now define LLR scores for alignment columns:
— log((prob of col | P, model) / (prob of col | background))

How do we get P, ?

— Given alignment, can estimate using ‘forwards-
backwards’ approach (cf linear-space algorithm, &
HMMs)

But need scores to get alignment!

— Possible iterative procedure:

— crude alignment — P, — scores — better alignment etc
In current practice, use ad hoc (easy to compute)
scores, e.g. sum of pairwise scores

— But still want P, for its own sake! 20



The Edit Graph for a Pair of Sequences
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Multiple Alignment via
Dynamic Programming

« Higher dimension edit graph
— each dimension corresponds to a sequence; co-ordinates
labelled by residues
— Each edge corresponds to aligned column of residues (with
gaps).
— Can put arbitrary weights on edges; in particular,

« can make these correspond to probabilities under an evolutionary
model (Sankoff 1975).

— 1mplicitly assumes independence of columns
 Highest weight path through graph again gives optimal
alignment
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Generalization to Higher Dimension

Each “cell” in 3-dimensional case looks like this:

\Y4

M %

Each edge projects onto a gap or residue in each
dimension, defining an alignment column; e.g. red

edge defines Vv

M
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» # edges & # vertices are proportional to product of
sequence lengths.

— For k sequences of size N, is of order O(NK)
 impractical even for proteins (N ~ 300 to 500 residues) if k > 5:

300°=2.4 x 10%?
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Multiple alignments: paths in huge WDAGS

 To find high-scoring paths, need to
— reduce size of graph
— restrict allowed weighting schemes, and/or
— sacrifice optimality guarantees

« Durbin et al. discuss methods implementing these ideas:
— Hein
— Carillo-Lipman
— progressive alignment (e.g. Clustal)

« HMMs provide nice (but not guaranteed optimal) approach
for constructing multiple alignments
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Progressive alignment

« Simplest version: align one sequence (the
reference) to each of the others, pairwise;
construct multiple alignment from that.

« More generally, progressively align pairs of
(sequences or) alignments, using a guide tree

— Tree may reflect evolution, or sequence quality
— Will tend to be more accurate

* Revise gaps
— correct errors due to gap placement & gap attraction
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Alignments

Guide Tree

(k,J, 1, s, u)

Sequences
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« Complexity: N? x (n— 1) where
— N =seq length, n = # seqs
Instead of N"
« (does not count gap correction)
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