
Lecture 11

• Alignment errors

– ‘Gap attraction’

• Multiple sequence alignment

– Evolutionary trees

– Higher-dimensional edit graphs

– Progressive alignment

1

• Major motivation for sequence alignment:

– illuminating mutation and selection in

evolutionarily related sequences

• Accuracy of alignment matters!

2

3

...accgaatcgggtcccgtta...

...accgaatcaggtcccgtta...

...accgaatcaggtcccgtca...

...acagaatcgggtcccgtta...

...acagaatcaggtcccgtta...

...acagaatcagggtcccgtta...

...acagaatcagggtcccgtta...

...accgaatcagg-tcccgtca...

...acagaatcagggtcccgtta... ...accgaatcaggtcccgtca...

ONLY OBSERVED SEQUENCES

(Observed) ALIGNMENT:

(may not be unique!)

(Unobserved) MUTATION HISTORY (in general, this is not

even inferrable!):

4

Complications

• Parallel & back mutations

 estimating total # of mutations requires

statistical modelling

• Insertion/deletion, & segmental mutations

 finding the correct alignment can be

problematic (‘gap attraction’)

-- even in closely related sequences!

Gap attraction
• If true alignment is

reported (maximum-scoring) alignment will be

(2 mismatches cost less than 2 indels)

5

...acagaatcagggtcc-gtta...

...acagaatcagg-tcccgtta...

...acagaatcagggtccgtta...

...acagaatcaggtcccgtta...

• Similarly, if true alignment is

reported alignment will be

(size-2 indel + mismatch cost less than 2 size-1 indels)

...acagaatcagggtcccgtta...

...acagaatcagg-tcc-gtta...

...acagaatcagggtcccgtta...

...acagaatcagg--tccgtta...

• This is an issue even for highly similar

genomes!

– But worse with increasing divergence

• Ideally, report alignments with local

indications of uncertainty

– or at least, several alignments with varying

alignment penalties

but this is almost never done

• Problem is ameliorated with multiple

alignments

6

Multiple alignments

• More sequences =>

– (potentially) more accurate alignments

– better resolution of mutations, selection

• Need > 2 sequences to polarize mutations

• An evolutionary tree relates the sequences!

7

8

A G G

? (G)

Evolutionary trees

• Binary tree with

– nleaf leaf nodes (observed individuals)

– nanc ancestral nodes (unobserved)

• Each ancestral node has two descendants (‘left’

and ‘right’); leaves have none

• # edges:

• # edge starts = 2 nanc

• # edge ends = nleaf + nanc – 1 (every node except root)

• ⸫ 2 nanc= nleaf + nanc – 1

• nanc= nleaf – 1, # edges = 2 nleaf – 2

9

10

leaf nodes

ancestral nodes

root node

• Want to compute probabilities of observed

leaf sequences, given tree

• Requires considering possible evolutionary

histories

– i.e. sequences at ancestral nodes

– # choices grows exponentially in both nanc and

sequence length !!

• and a probability model for change along

edges

11

Mutational model for tree

• Will assume independent evolution at each

sequence position

– Doesn’t allow for context effects (e.g. CpG hotspots!)

• Mutations along an edge e:

Pe(s | r) = prob a residue r at beginning of e is s

at end

• ‘Background’ residue freqs at the root:

Proot (r)

12

• Usual assumptions:

– (for DNA) Pe(s^ | r^) = Pe(s | r)

• (^ = complementary nuc)

• so each Pe has 6 independent params

– A single, reversible, infinitesimal (~per small time

unit) mutation model Pinf applies across entire tree

• Pe = (Pinf)t where t = time along e

• Reversibility implies root can’t be uniquely placed

13

Probability calculations on tree

• Given:

1. a set of observed residues at the leaves

(a gap-free alignment column of the sequences)

2. {Pe(s | r)} and {Proot (r)}

compute prob of observed residues

• Still exponentially many (in nanc) possibilities for

ancestral residues!

• But can use dynamic programming on a WDAG

…

14

• Each ancestral node in tree becomes 4 nodes in WDAG

– labelled with the 4 nucs

• leaf nodes remain unchanged

– labelled with observed nuc

• Two nodes in WDAG are connected by an edge

if corresponding tree nodes are (but reverse direction)

– weight = Pe(s | r) where e = tree edge, r, s = node labels

• ‘urnode’

– unlabelled

– 4 edges coming from the 4 root nodes

– weights = Proot (r)

15

Evolut tree → WDAG

16

A C G T

A C G T

A G G

e f

g

h Ph(G | r)

Pf(G | r)Pe(A | r)

Pg(s | r)

Proot (r)

urnode

• Size of WDAG is linear in nleaf

– # nodes: nleaf + 4 nanc + 1

– # edges: 4 nleaf + 16 (nanc – 1) + 4

• Edges in tree point down; in WDAG, up

– so WDAG ‘parents’ are below

17

• Compute overall probability of leaf residues

(nucleotides) by dynamic programming on

WDAG:

• Let, for each node v, p(v) = prob of leaf nucs

below v (i.e tree-descendants, or WDAG-

ancestors, of v), given v’s nuc

pleft(v) = prob of leaf nucs below and to left

pright(v) = prob of leaf nucs below and to right

then p(v) = pleft(v) pright(v)

18

• Compute these values node-by-node, visiting

(WDAG-)parents before children:

– starting at leaf nodes (setting p(v) = 1), ending at urnode

pleft(v) = σ𝑙𝑒𝑓𝑡−𝑢𝑤 𝑢, 𝑣 𝑝(𝑢) where

– u ranges over parent nodes to the left

– 𝑤 𝑢, 𝑣 = weight on edge from u to v

(= mutation prob from v to u)

Similarly for pright(v)

p(v) = pleft(v) pright(v)

– For v = urnode, view all parents as being to ‘left’ and p(v) =

pleft(v)

• p(urnode) = probability of the observed leaf nucs

19

Scoring multiple alignments
• Can now define LLR scores for alignment columns:

– log((prob of col | Pe model) / (prob of col | background))

• How do we get Pe ?

– Given alignment, can estimate using ‘forwards-

backwards’ approach (cf linear-space algorithm, &

HMMs)

• But need scores to get alignment!

– Possible iterative procedure:

– crude alignment → Pe → scores → better alignment etc

• In current practice, use ad hoc (easy to compute)

scores, e.g. sum of pairwise scores

– But still want Pe for its own sake! 20

21

The Edit Graph for a Pair of Sequences

A C G T T G A A T G A C C C A

G

C

A

T

G

A

C

G

A

22

Multiple Alignment via

Dynamic Programming
• Higher dimension edit graph

– each dimension corresponds to a sequence; co-ordinates
labelled by residues

– Each edge corresponds to aligned column of residues (with
gaps).

– Can put arbitrary weights on edges; in particular,

• can make these correspond to probabilities under an evolutionary
model (Sankoff 1975).

– implicitly assumes independence of columns

• Highest weight path through graph again gives optimal
alignment

23

Generalization to Higher Dimension

V
A

M

Each edge projects onto a gap or residue in each

dimension, defining an alignment column; e.g. red

edge defines

Each “cell” in 3-dimensional case looks like this:

V

−
M

24

• # edges & # vertices are proportional to product of

sequence lengths.

– For k sequences of size N, is of order O(Nk)

• impractical even for proteins (N ~ 300 to 500 residues) if k > 5:

3005 = 2.4 × 1012

25

Multiple alignments: paths in huge WDAGs

• To find high-scoring paths, need to

– reduce size of graph

– restrict allowed weighting schemes, and/or

– sacrifice optimality guarantees

• Durbin et al. discuss methods implementing these ideas:

– Hein

– Carillo-Lipman

– progressive alignment (e.g. Clustal)

• HMMs provide nice (but not guaranteed optimal) approach
for constructing multiple alignments

Progressive alignment

• Simplest version: align one sequence (the

reference) to each of the others, pairwise;

construct multiple alignment from that.

• More generally, progressively align pairs of

(sequences or) alignments, using a guide tree

– Tree may reflect evolution, or sequence quality

– Will tend to be more accurate

• Revise gaps

– correct errors due to gap placement & gap attraction

26

27

Guide Tree

k j

(k, j)

r s

(r, s)

(k, j, r, s)

u

(k, j, r, s, u)

Sequences

Alignments

• Complexity: N2 × (n – 1) where

– N = seq length, n = # seqs

instead of Nn

• (does not count gap correction)

28

