
Lecture 11

• Alignment errors

– ‘Gap attraction’

• Multiple sequence alignment

– Evolutionary trees

– Higher-dimensional edit graphs

– Progressive alignment
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• Major motivation for sequence alignment: 

– illuminating mutation and selection in 

evolutionarily related sequences

• Accuracy of alignment matters!
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...accgaatcgggtcccgtta...

...accgaatcaggtcccgtta...

...accgaatcaggtcccgtca...

...acagaatcgggtcccgtta...

...acagaatcaggtcccgtta...

...acagaatcagggtcccgtta...

...acagaatcagggtcccgtta...

...accgaatcagg-tcccgtca...

...acagaatcagggtcccgtta... ...accgaatcaggtcccgtca...

ONLY OBSERVED SEQUENCES

(Observed)  ALIGNMENT: 

(may not be unique!)

(Unobserved) MUTATION HISTORY (in general, this is not 

even inferrable!):
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Complications

• Parallel & back mutations 

 estimating total # of mutations requires 

statistical modelling

• Insertion/deletion, & segmental mutations 

 finding the correct alignment can be 

problematic (‘gap attraction’)

-- even in closely related sequences!



Gap attraction
• If true alignment is

reported (maximum-scoring) alignment will be

(2 mismatches cost less than 2 indels)
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...acagaatcagggtcc-gtta...

...acagaatcagg-tcccgtta...

...acagaatcagggtccgtta...

...acagaatcaggtcccgtta...

• Similarly, if true alignment is

reported alignment will be

(size-2 indel + mismatch cost less than 2 size-1 indels)

...acagaatcagggtcccgtta...

...acagaatcagg-tcc-gtta...

...acagaatcagggtcccgtta...

...acagaatcagg--tccgtta...



• This is an issue even for highly similar 

genomes!

– But worse with increasing divergence

• Ideally, report alignments with local 

indications of uncertainty 

– or at least, several alignments with varying 

alignment penalties

but this is almost never done

• Problem is ameliorated with multiple 

alignments
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Multiple alignments

• More sequences => 

– (potentially) more accurate alignments

– better resolution of mutations, selection

• Need > 2 sequences to polarize mutations 

• An evolutionary tree relates the sequences!

7



8

A G G

? (G)



Evolutionary trees

• Binary tree with

– nleaf leaf nodes (observed individuals) 

– nanc ancestral nodes (unobserved)

• Each ancestral node has two descendants (‘left’ 

and ‘right’); leaves have none

• # edges:

• # edge starts = 2 nanc

• # edge ends = nleaf + nanc – 1 (every node except root)

• ⸫ 2 nanc= nleaf + nanc – 1

• nanc= nleaf – 1,  # edges = 2 nleaf – 2
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leaf nodes

ancestral nodes

root node



• Want to compute probabilities of observed 

leaf sequences, given tree

• Requires considering possible evolutionary 

histories 

– i.e. sequences at ancestral nodes

– # choices grows exponentially in both nanc and 

sequence length !!

• and a probability model for change along 

edges
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Mutational model for tree

• Will assume independent evolution at each 

sequence position 

– Doesn’t allow for context effects (e.g. CpG hotspots!)

• Mutations along an edge e:

Pe(s | r) = prob a residue r at beginning of e is s

at end

• ‘Background’ residue freqs at the root:

Proot (r)
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• Usual assumptions:

– (for DNA ) Pe(s^ | r^) = Pe(s | r) 

• ( ^ = complementary nuc)

• so each Pe has 6 independent params

– A single, reversible, infinitesimal (~per small time 

unit) mutation model Pinf applies across entire tree

• Pe = (Pinf )t where t = time along e

• Reversibility implies root can’t be uniquely placed
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Probability calculations on tree

• Given:

1. a set of observed residues at the leaves 

( a gap-free alignment column of the sequences) 

2. {Pe(s | r)} and {Proot (r)}

compute prob of observed residues

• Still exponentially many (in nanc) possibilities for 

ancestral residues!

• But can use dynamic programming on a WDAG 

… 
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• Each ancestral node in tree becomes 4 nodes in WDAG

– labelled with the 4 nucs

• leaf nodes remain unchanged 

– labelled with observed nuc

• Two nodes in WDAG are connected by an edge

if corresponding tree nodes are (but reverse direction)

– weight = Pe(s | r) where e = tree edge, r, s = node labels

• ‘urnode’

– unlabelled

– 4 edges coming from the 4 root nodes

– weights = Proot (r)
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Evolut tree → WDAG
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• Size of WDAG is linear in nleaf

– # nodes: nleaf + 4 nanc + 1 

– # edges: 4 nleaf + 16 (nanc – 1) + 4

• Edges in tree point down; in WDAG, up

– so WDAG ‘parents’ are below
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• Compute overall probability of leaf residues 

(nucleotides) by dynamic programming on 

WDAG:

• Let, for each node v, p(v) = prob of leaf nucs

below v (i.e tree-descendants, or WDAG-

ancestors, of v), given v’s nuc

pleft(v) = prob of leaf nucs below and to left

pright(v) = prob of leaf nucs below and to right

then p(v) = pleft(v) pright(v)
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• Compute these values node-by-node, visiting 

(WDAG-)parents before children:

– starting at leaf nodes (setting p(v) = 1), ending at urnode

pleft(v) = σ𝑙𝑒𝑓𝑡−𝑢𝑤 𝑢, 𝑣 𝑝(𝑢) where

– u ranges over parent nodes to the left

– 𝑤 𝑢, 𝑣 = weight on edge from u to v

(= mutation prob from v to u)

Similarly for pright(v) 

p(v) = pleft(v) pright(v)

– For v = urnode, view all parents as being to ‘left’ and p(v) = 

pleft(v) 

• p(urnode) = probability of the observed leaf nucs
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Scoring multiple alignments
• Can now define LLR scores for alignment columns: 

– log((prob of col | Pe model) / (prob of col | background))

• How do we get Pe ? 

– Given alignment, can estimate using ‘forwards-

backwards’ approach (cf linear-space algorithm, & 

HMMs)

• But need scores to get alignment!

– Possible iterative procedure: 

– crude alignment → Pe → scores → better alignment etc

• In current practice, use ad hoc (easy to compute) 

scores, e.g. sum of pairwise scores

– But still want Pe for its own sake! 20
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The Edit Graph for a Pair of Sequences
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Multiple Alignment via

Dynamic Programming
• Higher dimension edit graph

– each dimension corresponds to a sequence; co-ordinates 
labelled by residues

– Each edge corresponds to aligned column of residues (with 
gaps). 

– Can put arbitrary weights on edges; in particular, 

• can make these correspond to probabilities under an evolutionary 
model (Sankoff 1975).

– implicitly assumes independence of columns

• Highest weight path through graph again gives optimal 
alignment
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Generalization to Higher Dimension

V
A

M

Each edge projects onto a gap or residue in each 

dimension, defining an alignment column; e.g. red

edge defines

Each “cell” in 3-dimensional case looks like this:

V

−
M
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• # edges & # vertices are proportional to product of 

sequence lengths.

– For k sequences of size N, is of order O(Nk) 

• impractical even for proteins (N ~ 300 to 500 residues) if k > 5:   

3005 = 2.4 × 1012
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Multiple alignments: paths in huge WDAGs

• To find high-scoring paths, need to 

– reduce size of graph 

– restrict allowed weighting schemes, and/or

– sacrifice optimality guarantees

• Durbin et al. discuss methods implementing these ideas:

– Hein 

– Carillo-Lipman

– progressive alignment (e.g. Clustal)

• HMMs provide nice (but not guaranteed optimal) approach 
for constructing multiple alignments



Progressive alignment

• Simplest version: align one sequence (the 

reference) to each of the others, pairwise; 

construct multiple alignment from that.

• More generally, progressively align pairs of 

(sequences or) alignments, using a guide tree

– Tree may reflect evolution, or sequence quality

– Will tend to be more accurate

• Revise gaps 

– correct errors due to gap placement & gap attraction
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Guide Tree
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• Complexity: N2 × (n – 1) where

– N = seq length, n = # seqs 

instead of Nn

• (does not count gap correction)
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