Lecture 11

- Alignment errors
 - 'Gap attraction'
- Multiple sequence alignment
 - Evolutionary trees
 - Higher-dimensional edit graphs
 - Progressive alignment

Major motivation for sequence alignment:

 illuminating *mutation* and *selection* in
 evolutionarily related sequences

• Accuracy of alignment matters!

Complications

• Parallel & back mutations

⇒ estimating total # of mutations requires statistical modelling

- Insertion/deletion, & segmental mutations
 - ⇒ finding the correct alignment can be problematic ('gap attraction')

-- even in closely related sequences!

Gap attraction

- If *true* alignment is
 - ...acagaatcagggtcc-gtta...
 - ...acagaatcagg-tcccgtta...

reported (maximum-scoring) alignment will be

- ...acagaatcagggtccgtta...
- ...acağaatcağğ**tc**ccğtta...

(2 mismatches cost less than 2 indels)

- Similarly, if *true* alignment is
 - ...acagaatcagggtcccgtta...
 - ...acagaatcagg-tcc-gtta...

reported alignment will be

- ...acagaatcagggtcccgtta...
- ...acagaatcagg**--t**ccgtta...

(size-2 indel + mismatch cost less than 2 size-1 indels)

- This is an issue even for highly similar genomes!
 - But worse with increasing divergence
- Ideally, report alignments with local indications of uncertainty
 - or at least, several alignments with varying alignment penalties
 - but this is almost never done
- Problem is ameliorated with multiple alignments

Multiple alignments

- More sequences =>
 - (potentially) more accurate alignments
 - better *resolution* of mutations, selection
- Need > 2 sequences to *polarize* mutations

• An evolutionary *tree* relates the sequences!

Evolutionary trees

- Binary tree with
 - n_{leaf} *leaf nodes* (observed individuals)

 $- n_{anc}$ ancestral nodes (unobserved)

- Each ancestral node has two descendants ('left' and 'right'); leaves have none
- # edges:
 - # edge *starts* = $2 n_{anc}$
 - # edge $ends = n_{leaf} + n_{anc} 1$ (every node except root)

•
$$\therefore 2 n_{anc} = n_{leaf} + n_{anc} - 1$$

• $n_{anc} = n_{leaf} - 1$, # edges = $2 n_{leaf} - 2$

- Want to compute *probabilities* of observed leaf sequences, given tree
- Requires considering possible evolutionary histories
 - i.e. sequences at ancestral nodes
 - # choices grows exponentially in both n_{anc} and sequence length !!
- and a probability model for change along edges

Mutational model for tree

• Will assume independent evolution at each sequence position

- Doesn't allow for context effects (e.g. CpG hotspots!)

- Mutations along an edge e:
 P_e(s / r) = prob a residue r at beginning of e is s at end
- 'Background' residue freqs at the root:

 $P_{root}(r)$

- Usual assumptions:
 - (for DNA) $P_e(s^{(r)} r^{(r)}) = P_e(s / r)$
 - (^ = complementary nuc)
 - so each P_e has 6 independent params
 - A *single, reversible, infinitesimal* (~per small time unit) mutation model P_{inf} applies across entire tree
 - $P_e = (P_{inf})^t$ where t = time along e
 - Reversibility implies root can't be uniquely placed

Probability calculations on tree

- Given:
 - 1. a set of observed residues at the leaves
 - (a gap-free alignment column of the sequences)
 - 2. $\{P_e(s | r)\}$ and $\{P_{root}(r)\}$
- compute prob of observed residues
- Still exponentially many (in *n_{anc}*) possibilities for ancestral residues!
- But can use dynamic programming on a WDAG

Evolut tree \rightarrow WDAG

- Each *ancestral node* in tree becomes 4 nodes in WDAG
 labelled with the 4 nucs
- *leaf nodes* remain unchanged
 - labelled with observed nuc
- Two nodes in WDAG are connected by an *edge* if corresponding tree nodes are (but reverse direction)
 weight = P_e(s / r) where e = tree edge, r, s = node labels
- 'urnode'
 - unlabelled
 - 4 edges coming from the 4 root nodes
 - weights = $P_{root}(r)$

- Size of WDAG is linear in n_{leaf} - # nodes: $n_{leaf} + 4 n_{anc} + 1$ - # edges: $4 n_{leaf} + 16 (n_{anc} - 1) + 4$
- Edges in tree point *down*; in WDAG, *up* so WDAG 'parents' are *below*

• Compute overall *probability* of leaf residues (nucleotides) by *dynamic programming* on WDAG:

 Let, for each node v, p(v) = prob of leaf nucs below v (i.e tree-descendants, or WDAGancestors, of v), given v's nuc

 $p_{left}(v) = \text{prob of leaf nucs } below \text{ and to } left$ $p_{right}(v) = \text{prob of leaf nucs } below \text{ and to } right$ then $p(v) = p_{left}(v) p_{right}(v)$

- Compute these values node-by-node, visiting (WDAG-)parents before children:
 - *starting* at leaf nodes (setting p(v) = 1), *ending* at urnode

 $p_{left}(v) = \sum_{left-u} w(u, v) p(u)$ where

- -u ranges over parent nodes to the left
- w(u, v) = weight on edge from u to v
 (= mutation prob from v to u)

Similarly for $p_{right}(v)$

 $p(v) = p_{left}(v) p_{right}(v)$

- For v = urnode, view *all* parents as being to 'left' and $p(v) = p_{left}(v)$
- p(urnode) = probability of the observed leaf nucs

Scoring multiple alignments

- Can now define LLR scores for alignment columns:
 log((prob of col | P_e model) / (prob of col | background))
- How do we get P_e ?
 - Given alignment, can estimate using 'forwardsbackwards' approach (cf linear-space algorithm, & HMMs)
- But need scores to get alignment!
 - Possible iterative procedure:
 - crude alignment $\rightarrow P_e \rightarrow$ scores \rightarrow better alignment etc
- In current practice, use ad hoc (easy to compute) scores, e.g. sum of pairwise scores
 - But still want P_{ρ} for its own sake!

The Edit Graph for a Pair of Sequences

Multiple Alignment via Dynamic Programming

- Higher dimension edit graph
 - each dimension corresponds to a sequence; co-ordinates labelled by residues
 - Each edge corresponds to aligned column of residues (with gaps).
 - Can put arbitrary weights on edges; in particular,
 - can make these correspond to probabilities under an evolutionary model (Sankoff 1975).
 - implicitly assumes independence of columns
- Highest weight path through graph again gives optimal alignment

Generalization to Higher Dimension

Each "cell" in 3-dimensional case looks like this:

Each edge projects onto a gap or residue in each dimension, defining an alignment column; e.g. red edge defines V

- # edges & # vertices are proportional to product of sequence lengths.
 - For k sequences of size N, is of order $O(N^k)$
 - impractical even for proteins ($N \sim 300$ to 500 residues) if k > 5:

 $300^5 = 2.4 \times 10^{12}$

Multiple alignments: paths in huge WDAGs

- To find high-scoring paths, need to
 - reduce size of graph
 - restrict allowed weighting schemes, and/or
 - sacrifice optimality guarantees
- Durbin *et al.* discuss methods implementing these ideas:
 - Hein
 - Carillo-Lipman
 - progressive alignment (e.g. Clustal)
- HMMs provide nice (but not guaranteed optimal) approach for constructing multiple alignments

Progressive alignment

- Simplest version: align one sequence (the reference) to each of the others, pairwise; construct multiple alignment from that.
- More generally, progressively align *pairs* of (*sequences or*) *alignments*, using a *guide tree*
 - Tree may reflect evolution, or sequence quality
 - Will tend to be more accurate
- Revise gaps

- correct errors due to gap placement & gap attraction

Guide Tree

- Complexity: N² × (n 1) where

 N = seq length, n = # seqs
 instead of Nⁿ
- (does not count gap correction)