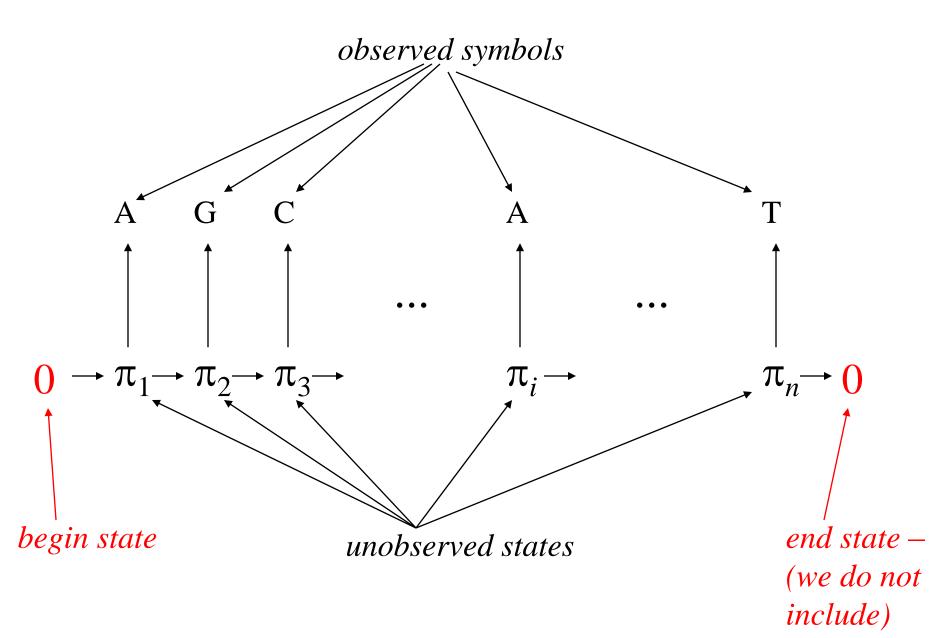

Lecture 12


- Hidden Markov Models
 - Intro & Definitions
 - -Examples

Hidden Markov Models

- Probability models for sequences of *observed symbols*, e.g.
 - nucleotide or amino acid residues
 - aligned pairs of residues
 - aligned set of residues corresponding to leaves of an underlying evolutionary tree
 - angles in protein chain (structure modelling)
 - sounds (speech recognition)

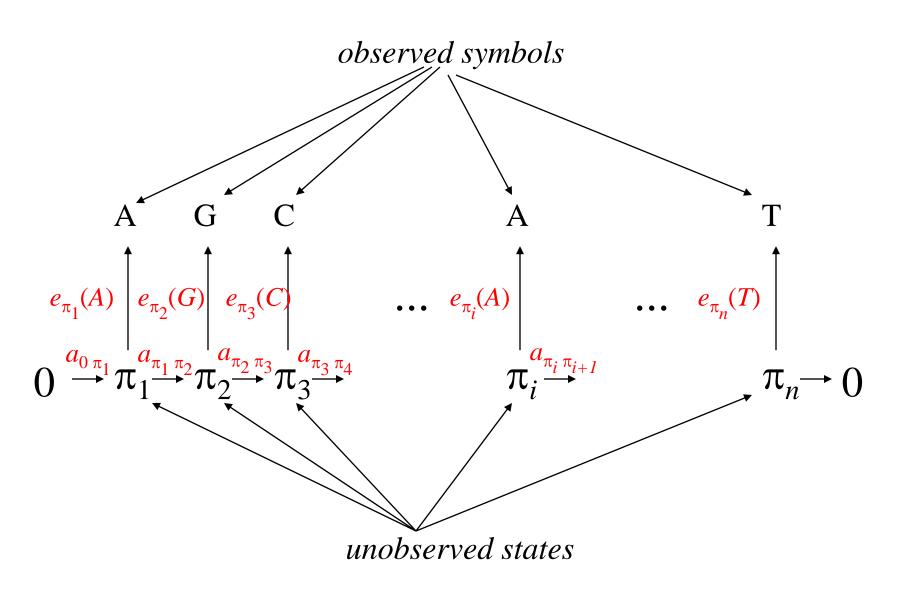
- Assume a sequence of "*hidden*" (unobserved) *states* underlies each observed symbol sequence
- Each state "*emits*" symbols (one symbol at a time)
- States may correspond to underlying "reality" we are trying to infer, e.g.
 - unobserved biological feature:
 - (positions within) a site
 - rate of evolution
 - protein structural element
 - speech phoneme

Advantages of HMMs

- Flexible –gives reasonably good models in wide variety of situations
- Computationally efficient
- Often interpretable:
 - hidden states can correspond to biological features.
 - can find most probable sequence of hidden states
 biological "parsing" of regidue sequence
 - = biological "parsing" of residue sequence.

HMMs: Formal Definition

- Alphabet $\mathcal{B} = \{b\}$ of *observed symbols*
- Set S = {k} of *hidden states* (usually k = 0,1, 2 ...,m; 0 is reserved for "begin" state, and sometimes also an "end" state)
- (Markov chain property): prob of state occurring at given position depends only on immediately preceding state, and is given by


transition probabilities (a_{kl}) : a_{kl} = Prob(next state is $l \mid$ curr state is k) $\sum_{l} a_{kl} = 1$, for each k.

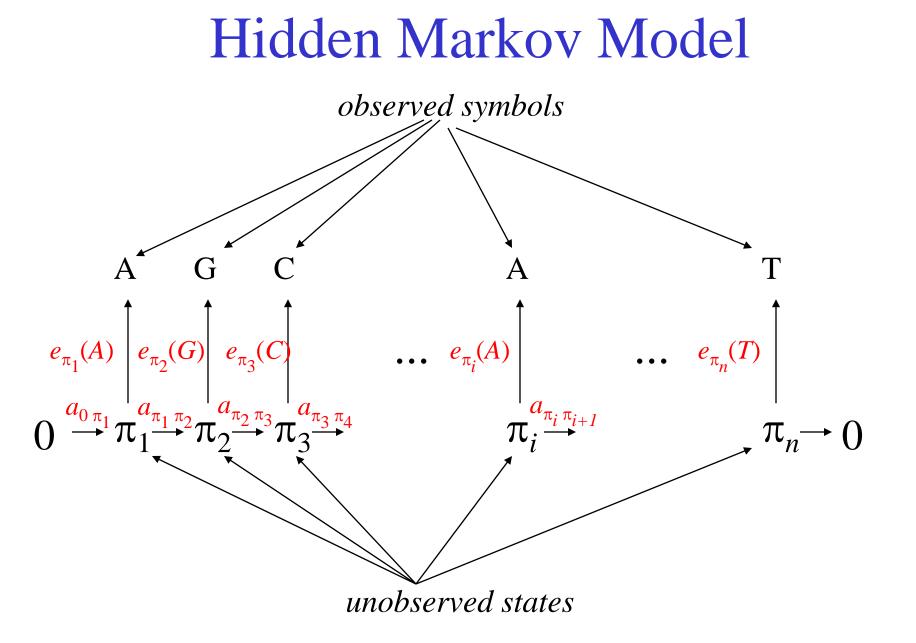
- Usually, many transition probabilities are set to 0.
- Model *topology* is the # of states, and *allowed* (i.e. $a_{kl} \neq 0$) transitions.
- Sometimes omit begin state, in which case need *initiation probabilities* (p_k) for sequence starting in a given state

from lecture 3:

Conditional probabilities (as on the previous slide) can be used to define a *first-order Markov model* (or *Markov chain model*)
 for sequence probabilities:

$$P(s_1 \ s_2 \ s_3 \ \cdots \ s_n) \\ \equiv P(s_1) \ P(s_2 \ / \ s_1) \ P(s_3 \ / \ s_2) \ \cdots \ P(s_n \ / \ s_{n-1})$$

• Prob that symbol occurs at given sequence position depends only on hidden state at that position, and is given by


emission probabilities:

e_k(b) = Prob(observed symbol is *b* | curr state is *k*)
(begin and end states do not emit symbols)

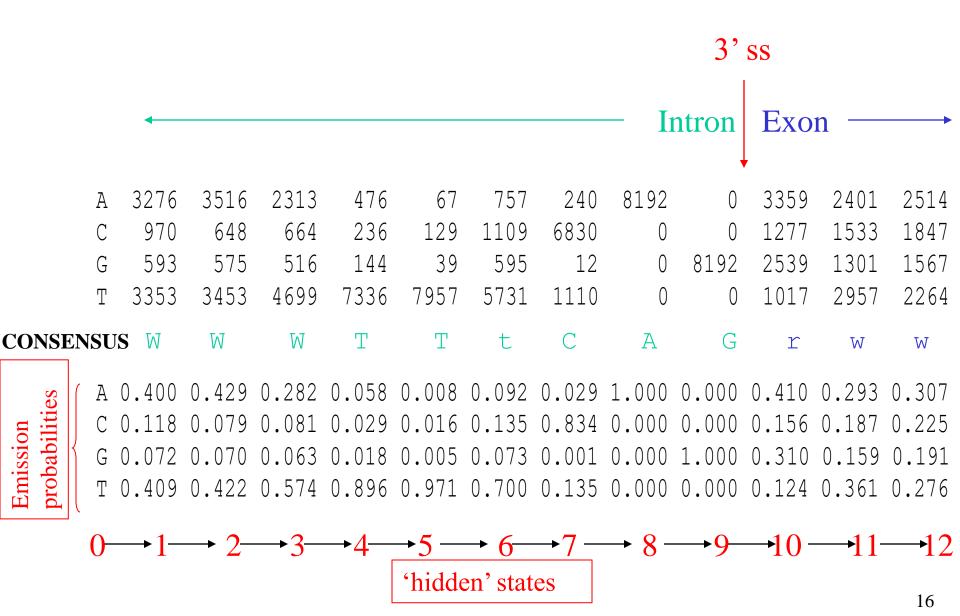
- Note that
 - there are no *direct* dependencies between observed symbols in the sequence, however
 - there are *indirect* dependencies implied by state dependencies

Where do the parameters come from?

- Can either
 - *define* parameter values *a priori*, or
 - *estimate* them from training data (observed sequences of the type to be modelled).
- Usually one does a mixture of both
 - model topology is defined (some transitions set to 0),
 but
 - remaining parameters estimated

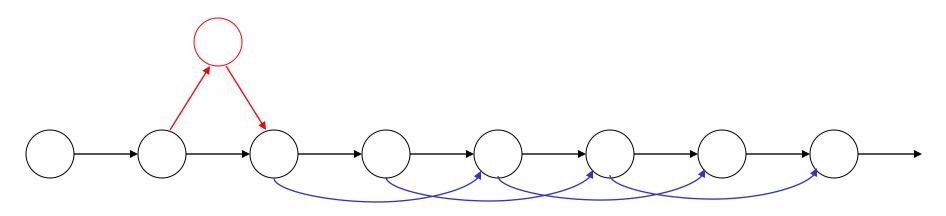
HMM examples: 1-state HMMs

single state, emitting residues with specified freqs:
 = 'background' model


HMM examples: site models

- "states" correspond to positions (columns in the tables). state *i* transitions only to state *i*+1:
 - $-a_{i,i+1} = 1$ for all *i*;
 - all other a_{ij} are 0
- emission probabilities are position-specific frequencies: values in frequency table columns

Topology for Site HMM: 'allowed' transitions


HMM for C. elegans 3' Splice Sites

- Can expand model to allow omission of nuc at some positions by including other (downstream) transitions (or via "silent states")
- Can allow insertions by including additional states.
- transition probabilities then no longer necessarily 1 or 0

Insertions & Deletions in Site Model

insertion state

other transitions correspond to deletions

HMM examples (in Durbin *et al.*)

- protein families (like site models but important to allow insertions & deletions)
- Pair HMMs
- protein structure (symbols emitted are structural elements)

HMM examples: 2-state HMMs

- if a₁₁ and a₂₂ are small (close to 0), and
 a₁₂ and a₂₁ are large (close to 1),
 then get (nearly) periodic model with period 2; e.g.
 - dinucleotide repeat in DNA, or
 - (some) beta strands in proteins.
- if a_{11} and a_{22} large, and

 a_{12} and a_{21} small,

then get models of alternating regions of different compositions (specified by emission probabilities), e.g.

- higher vs. lower G+C content regions (RNA genes in thermophilic bacteria); or
- hydrophobic vs. hydrophilic regions of proteins (e.g. transmembrane domains).

Closely related to D-segment method (lecture 7)!

A A T G C C T G G A T A

HMM examples: Markov models

- Ordinary Markov chain model:
 - states = observed symbols
 - emission probs = 1 or 0
 - transition probs = prob of observing a symbol, given the preceding one.
- Order *k* Markov model
 - states = length *k* words (e.g. $b_1b_2 \dots b_k$)
 - (unique) symbol emitted by $b_1b_2 \dots b_k$ is b_k
 - transition prob from $b_1b_2 \dots b_k$ to $c_1c_2 \dots c_k$ is non-zero only if
 - $c_1c_2 \dots c_{k-1} = b_2b_3 \dots b_k$, in which case it is $P(b_{k+1}|b_1b_2 \dots b_k)$ where $b_{k+1} = c_k$

from lecture 3:

- Similarly, one can define an a *order-k Markov model* in which the probability of s_i is conditional on s_{i-k} … s_{i-2} s_{i-1}
 (i.e. the *k* preceding residues)
- Note that the required number of parameters is exponential in *k*
- The *independence model* (which is usually good enough for us!) = the *order-0 Markov model*