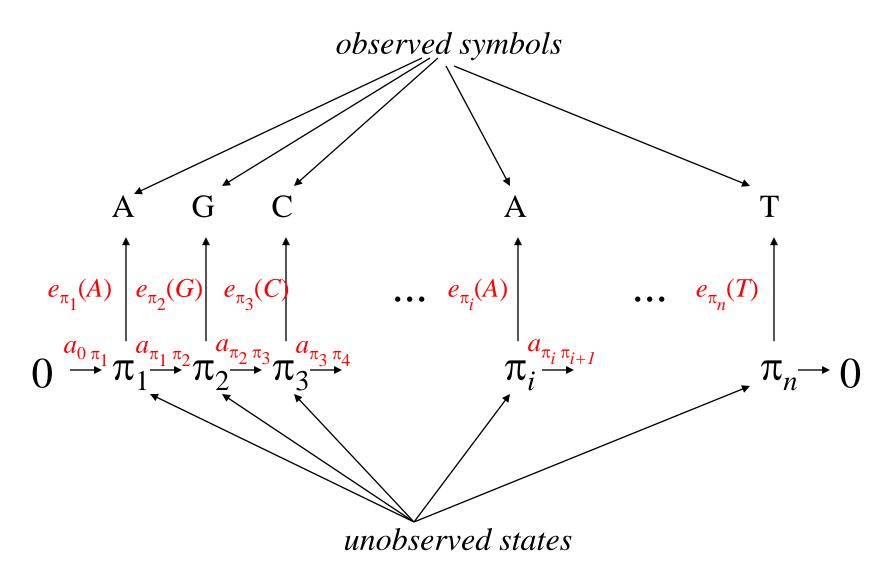
Lecture 14

Forward & forward/backward algorithms

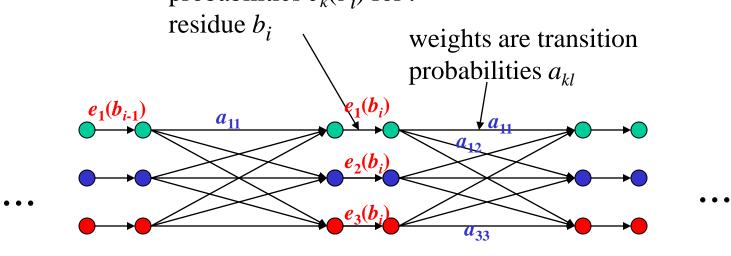
- HMM parameter estimation
 - Viterbi training
 - -Baum-Welch training

Hidden Markov Model



WDAG for 3-state HMM, length *n* sequence

weights are emission probabilities $e_k(b_i)$ for i^{th} residue b.

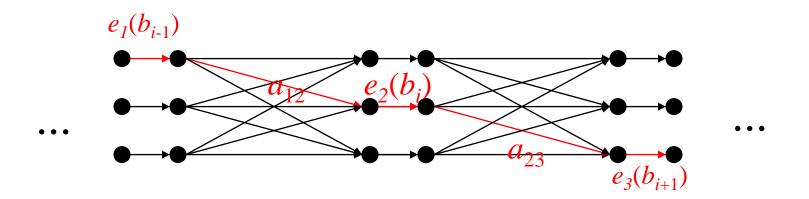


 b_{i-1} position i-1

 b_i position i

 b_{i+1} position i+1

Path Weights



position *i*-1

position i

position i+1

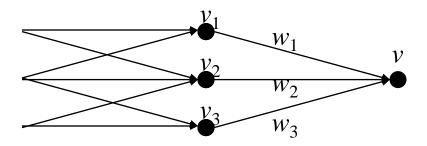
- *Paths* through graph from begin node to end node correspond to *sequences of states*
- **Product weight** along path
 - = *joint probability* of state sequence & observed symbol sequence
- Highest-weight path = highest probability state sequence
- Sum of (product) path weights, over all paths,
 - = probability of observed sequence
- Sum of (product) path weights over
 - all paths going through a particular node, or
 - all paths that include a particular edge,
 - divided by prob of observed sequence,
 - = posterior probability of that edge or node

- use dynamic programming to find
 - sum of all product path weights
 - = "forward algorithm" for probability of observed sequence
 - sum of all product path weights through particular node or particular edge
 - = "forward/backward algorithm" to find posterior probabilities
- Now must use product weights and non-logtransformed probabilities
 - because need to add probabilities

- In each case, compute successively for each node (by increasing depth: left to right)
 - the sum of the weights of all paths ending at that node
 - N.B. paths are constrained to begin at the begin node!
- In forward/backward algorithm,
 - work through all nodes a second time, in opposite direction
 - i.e. in reverse graph constraining paths to start in rightmost column of nodes

For each vertex v, let $f(v) = \sum_{\text{paths } p \text{ ending at } v} \text{weight}(p)$, where weight(p) = product of edge weights in p. Only consider paths starting at 'begin' node.

Compute f(v) by dynam. prog: $f(v) = \sum_i w_i f(v_i)$, where v_i ranges over the parents of v, and w_i = weight of the edge from v_i to v.

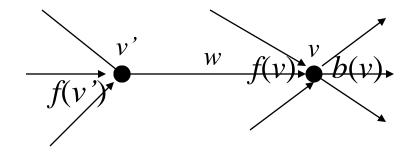


Similarly for $b(v) = \sum_{p \text{ beginning at } v} \text{weight}(p)$

The paths *beginning* at *v* are the ones *ending* at *v* in the *reverse* (or *inverted*) graph

from lecture 10:

- Can "invert" any WDAG: create graph with
 - same vertices & edge weights
 - direction of each edge reversed
- inverted WDAG has same paths & path weights, but in reverse order
- inverting does not necessarily "invert" depth structure



f(v)b(v) = sum of the path weights of all paths through v.

f(v')wb(v) = sum of the path weights of all paths through the edge (v',v)

Forward/backward algorithm

- Work through graph in forward direction:
 - compute and store f(v)
- Then work through graph in backward direction:
 - compute b(v)
 - compute f(v) b(v) and f(v)wb(v) as above, store in appropriate cumulative sums
 - only need to store b(v) until have computed b's at next position
- Posterior probability of being in state s at position i is f(v) b(v) / total sequence prob
 - where v is the corresponding graph node

- Numerical issues: multiplying many small values can cause underflow. Remedies:
 - Scale weights to be close to 1 (affects all paths by same constant factor which can be multiplied back later); or
 - (where possible) use log weights, so can add instead of multiplying.
 - see Rabiner & Tobias Mann links on web page

HMM Parameter Estimation

- *Parameters* = transition & emission probs
 - parameter values \leftrightarrow probability model
- If unknown, estimate from set of training sequences
- *Maximum likelihood* (ML) estimation (= choice of param vals to maximize prob of training data) is preferred
 - optimality properties of ML estimates discussed in Ewens & Grant
 - ← finding maximum value on a multi-dimensional surface
 - Hard problem! Can be many local maxima

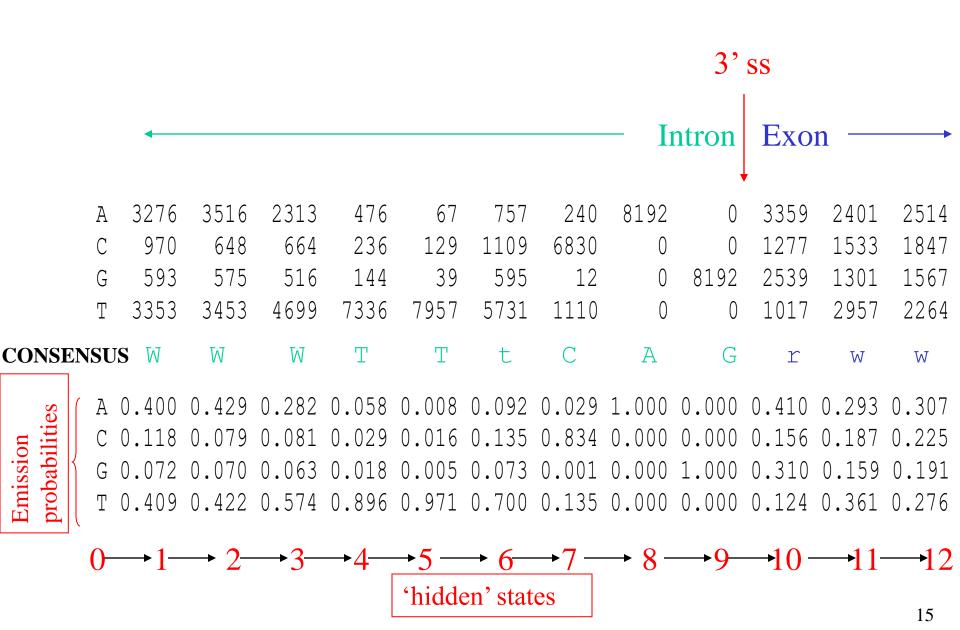
Parameter estimation when state sequence is *known*

- When underlying state sequence for each training sequence is *known*,
 - e.g.: site model

then ML estimates are given by:

- emission probabilities:
 - $e_k(b)^* = (\# \text{ times symbol } b \text{ emitted by state } k) / (\# \text{ times state } k \text{ occurs}).$
- transition probabilities:
 - $a_{kl} = (\text{# times state } k \text{ followed by state } l) / (\text{# times state } k \text{ occurs})$
- in denominator above, omit occurrence at last position of sequence (for transition probabilities)
 - But include it for emission probs
- can include pseudocounts, to incorporate prior expectations/avoid small sample overfitting (Bayesian justification)

HMM for C. elegans 3' Splice Sites



Parameter estimation when state sequence *unknown*

- Viterbi training
 - 1. choose starting parameter values
 - must be valid probabilities; avoid 0 unless topology dictates
 - make them *biologically plausible* given state interpretation
 - 2. find Viterbi highest weight paths for each sequence
 - 3. estimate new emission and transition probs as above, *assuming* the Viterbi state sequence
 - 4. iterate steps 2 and 3 until convergence
 - not guaranteed to occur but nearly always does
 - 5. repeat steps 1-4 with other starting values
 - choose values with highest total path score

• Viterbi training does *not* necessarily give ML estimates, but often are reasonably good

Baum-Welch training

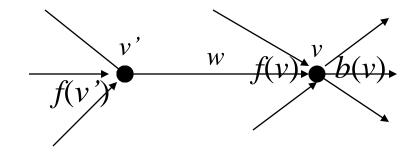
- Special case of EM ('expectation-maximization') algorithm
- like Viterbi training, but
 - uses *all* paths, each weighted by its probability rather than just highest probability path.
- sometimes give significantly better results than Viterbi
 - − e.g. for PFAM

Implementing Baum-Welch

An edge in the WDAG contributes *fractional* (or *weighted*) *counts* given by its posterior probability:

- (*): $(\sum_{\text{all paths } p \text{ through edge } e} \text{weight}(p)) / (\sum_{\text{all paths } p} \text{weight}(p))$

(Fractional counts are computed using forward-backward algorithm)



f(v)b(v) = sum of the path weights of all paths through v.

f(v')wb(v) = sum of the path weights of all paths through the edge (v',v)

- Compute new param estimates
 - $e_k(b)^*$ = (frac. # times symbol b emitted by state k) / (frac. # times state k occurs)
 - a_{kl} ^ = (frac. # times state k followed by state l) / (frac. # times state k occurs)
 - (In denom,, omit frac counts at last position of sequence)

where "frac. # times" is given by (*) for appropriate edge type (emission or transition)

- New Baum-Welch parameter estimates have higher likelihood
 - general property of EM algorithm
 - not true in general for Viterbi training

Iterate: get series of estimates converging to a local maximum on likelihood surface

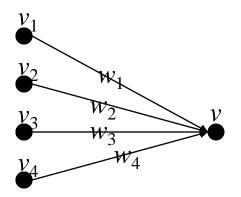
Search of parameter space

- ML estimates correspond by definition to *global* maximum;
- but there may be many *local* maxima, and EM or Viterbi search can get "trapped" in one
- remedies:
 - Consider multiple starts (multiple choices for starting parameters)
 - use "reasonable values" to start search (e.g. unlikely transitions should be given small initial probabilities)

- Allow search to "jump" out of local maxima:
 - Add "noise" to counts at each iteration; gradually reduce the amount of noise
 - Use Viterbi-like training, but
 - sample paths probabilistically
 - » (in retracing Viterbi path, choose edge at random according to its prob, rather than taking highest prob parent);
 - use "temperature" T to adjust probabilities;
 - » initially with large T making all probs approximately equal;
 - » then gradually reduce T

Probabilistic Viterbi Backtracking

reset all weights w to $w^{1/T}$. For large T (>> 1), this makes distinct w's relatively close; for small T (<< 1), relatively far apart



choose parent v_i with probability $w_i f(v_i) / f(v)$. For large T, all parents almost equally likely to be chosen; for small T, strongly favor largest (max) $w_i f(v_i)$

given choice of paths, re-estimate weights; iterate