
Lecture 16

• PhastCons

PhastCons PhyloHMM

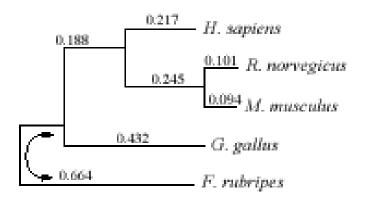
$$\mu = a_{cn}$$

$$v = a_{nc}$$

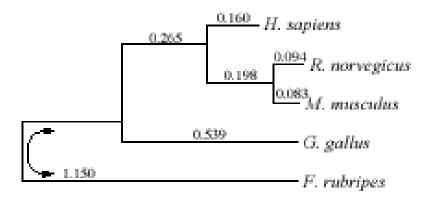
Some general issues in applying probability models, in the PhyloHMM context

- Is the model computable?
- Is the model 'reasonable'?
 - 2 states enough?
 - variability of mutation, selection within genome
 - changes in selected sites over time
 - but simplicity has its advantages!
 - interpretability
 - overfitting & parameter estimation less problematic
 - Markov condition on transition probabilities
 - treatment of gaps

- How good is the input data?
 - alignability of neutral sequence
 - accuracy of genome sequence alignments


- Are results reliable?
 - no true 'test set' instead, putative false positive rate,
 and 'biological plausibility' of findings

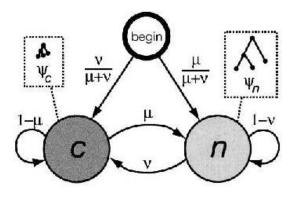
Alignment issues


- Multiz: progressive pairwise alignments
- accurate multiple genome alignment not a solved problem!
 - statistical assessment: Prakash & Tompa (2005, 2007, 2009)
 - ENCODE region alignment analyses: Margulies EH et al. 2007
 - major issues:
 - accurate gap placement (even for close species!!)
 - discrimination among paralogous sequences (e.g. repeats, duplications)
 - short 'junk' alignment segments
 - in principle, more sequences should give more accurate alignments
- inaccurate alignments can cause
 - neutral rate to be overestimated
 - conserved segments to be overidentified
 - because more slowly mutating (or better aligned) neutral segments may be called conserved

- for distantly related species, neutrally evolving regions no longer alignable
 - analyze 4D sites in coding sequences to estimate neutral rates
 - CDS alignments much more reliable, but
 - synonymous sites somewhat atypical (some selection; composition & mutation patterns)

PhastCons Nonconserved

Fourfold Degenerate



The Genetic Code

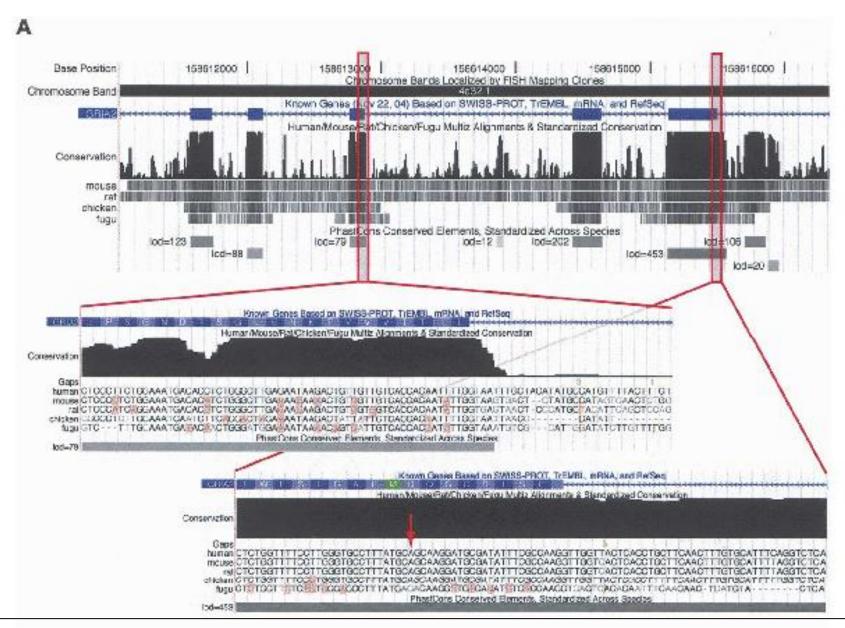
	U	C	A	G	
	Phe	Ser	${ t Tyr}$	Cys	U
U	Phe	Ser	${ t Tyr}$	Cys	C
O	Leu	Ser	Stop	Stop	A
	Leu	Ser	Stop	${ t Trp}$	G
	Leu	Pro	His	Arg	U
C	Leu	Pro	His	Arg	C
C	Leu	Pro	Gln	Arg	A
С	Leu	Pro	Gln	Arg	G
	Ile	Thr	Asn	Ser	U
A	Ile	Thr	Asn	Ser	C
A	Ile	Thr	Lys	Arg	A
	Met	${ t Thr}$	Lys	Arg	G
	Val	Ala	Asp	${ t Gly}$	U
G	Val	Ala	Asp	${ t Gly}$	C
3	Val	Ala	Glu	${ t Gly}$	A
	Val	Ala	Glu	Gly	G

Notation

- $\mu = a_{cn}$, $\omega = 1/\mu$ (expected length of conserved elt)
- $v = a_{nc}$
- expected 'coverage' γ (frac of genome that is conserved):
 - = Elen (cons seg) / (Elen(cons seg) + (Elen(neut seg))
 - $= (1/\mu) / (1/\mu + 1/\nu)$
 - $= \nu / (\mu + \nu)$

- transition probs imply *a priori* length dist'ns for conserved & non-conserved segments
 - prob(cons seg has length n) is

$$(a_{cc})^{n-1}a_{cn} = (a_{cc})^{n-1}(1 - a_{cc})$$


- geometric distribution
- expected length (Elen) ω of conserved segment is

$$1.0 / (1 - a_{cc}) = 1.0 / a_{cn}$$

special case: $a_{cc} = .5 = a_{nn} \Rightarrow$ positions are independent

PhastCons Parameter Estimation

- parameters estimated separately in 1 Mb windows using EM algorithm
 - full maximum likelihood analysis, or
 - constraining some parameters
 - & averaged over genome
- full MLE results don't match biologists' intuition -- too much 'smoothing':
 - fewer, & larger, conserved elements
 - long, apparently non-conserved regions within conserved elements
 - attributed to fact that (prior) geometric length dist'n inappropriate

from Siepel A. et al. (2005). Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes. Genome Res. 15:1034-50.

Group	Method	Total no. ^a	Ave. len. ^b	Cov.c	CDS cov. d	μ	ν	ω	γ	L_{\min}
vert.	MLE	561,103	216.1	4.2%	68.8%	0.018	0.004	55.4	0.191	30.4
	55%	1,058,855	75.3	2.8%	56.8%	0.125	0.029	8.0	0.187	12.9
	65%°	1,157,180	103.5	4.2%	66.1%	0.083	0.030	12.0	0.265	16.0
	75%	1,381,978	167.5	8.1%	76.6%	0.043	0.031	23.0	0.415	22.6
	2.5 - 12 - 2	TD : 1		<i>C</i> 4 0	ora d	CIE.	3.6. 0	TT / 1	11 7 5	T
Group	Method	Total no. a	Ave. len. ^o	$Cov.^c$	CDS cov. d	CD	S frac. e	$H(oldsymbol{\psi}_c$	$ \psi_n\rangle$	L_{\min}
vert.	65%	1,157,180	103.5	4.2%	66.1%	l	18.0%		0.611	16.0
	4d	797,777	109.3	3.0%	64.2%		24.0%		0.854	11.0

Instead: -- impose constraints

- coverage constraint:
 - 65% of coding bases covered by conserved elts
 - (target value based on earlier mouse/human analysis)
- smoothness constraint:
 - PIT (≡ expected min. amt of phylogenetic info required to predict a conserved element)
 - = 9.8 bits
 - (forced to be same for all species groups)

- constraints met by 'tuning' γ and ω (or equivalently transit probs)
 - choose γ and ω ,
 - get ML estimates of other parameters by EM algorithm
 - see whether get desired coverage & PIT
 - if not, adjust γ and ω & redo

- L_{\min} : expected min length of a conserved segment that could appear in a Viterbi path
- at L_{\min} , expected loglike of staying in state n
 - = expected loglike of switching to c & back again, so

$$\begin{split} (L_{\min}+1)\log(1-\nu) + L_{\min} \sum_{x} P(x|\pmb{\psi}_c) \log P(x|\pmb{\psi}_n) \\ &= \log \nu + \log \mu + (L_{\min}-1)\log(1-\mu) + L_{\min} \sum_{x} P(x|\pmb{\psi}_c) \log P(x|\pmb{\psi}_c) \end{split}$$

•
$$L_{\min} = \frac{\log \nu + \log \mu - \log(1 - \nu) - \log(1 - \mu)}{\log(1 - \nu) - \log(1 - \mu) - H(\psi_c || \psi_n)}$$

where

$$H(\boldsymbol{\psi}_c||\boldsymbol{\psi}_n) = \sum_x P(x|\boldsymbol{\psi}_c) \log \frac{P(x|\boldsymbol{\psi}_c)}{P(x|\boldsymbol{\psi}_n)}$$

= rel entropy of *c*-state emission prob dist'n w.r.t.

n-state dist'n

• PIT (phylogenetic information threshold)

$$\equiv L_{\min}H(\psi_c||\psi_n)$$

= 'expected min amt of phylogenetic info required to predict conserved element' • Final param estimates (for vertebrates):

$$-\gamma = 0.265$$

$$-\omega = 12.0 \text{ bp}$$

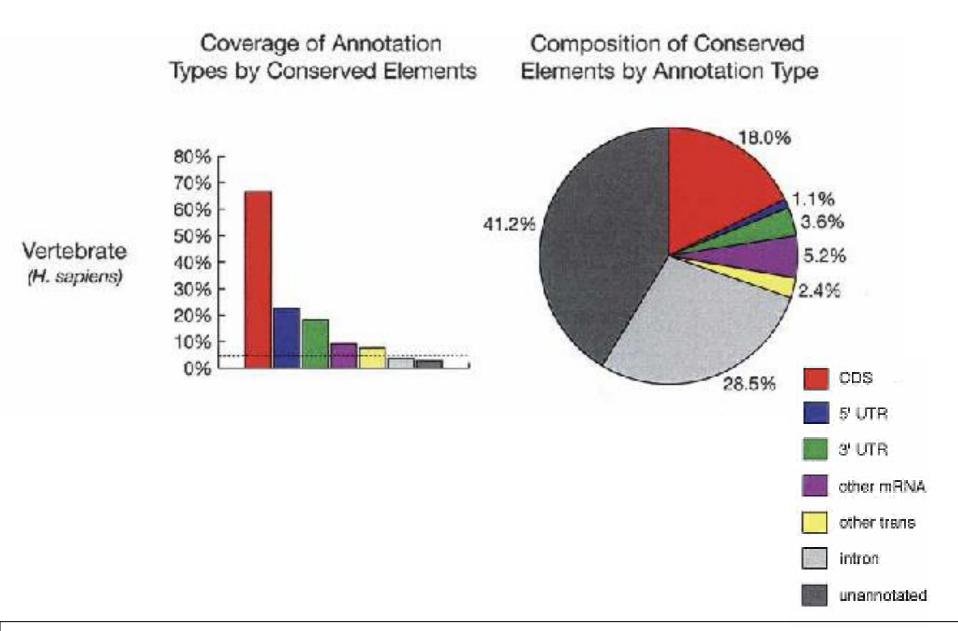
$$-H(\psi_c || \psi_n) = .608$$
 bits / site

$$-L_{\min} = 16.1 \text{ bp}$$

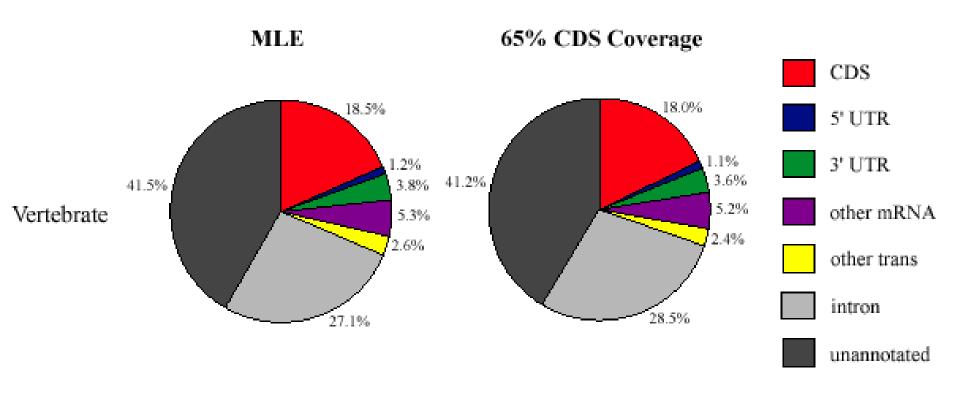
$$-\operatorname{PIT} = L_{\min} H(\psi_{c} || \psi_{n}) = 9.8 \text{ bits}$$

Group	Method	Total no.a	Ave. len. ^b	Cov.c	CDS cov.d	μ	ν	ω	γ	L_{\min}
	MLE	561,103	216.1	4.2%	68.8%	0.018	0.004	55.4	0.191	30.4
a secondo	55%	1,058,855	75.3	2.8%	56.8%	0.125	0.029	8.0	0.187	12.9
vert.	65%°	1,157,180	103.5	4.2%	66.1%	0.083	0.030	12.0	0.265	16.0
	75%	1,381,978	167.5	8.1%	76.6%	0.043	0.031	23.0	0.415	22.6
Group	Method	Total no. a	Ave. len. ^b	Cov.c	CDS cov.	CDS	S frac. e	$H(oldsymbol{\psi}_c$	$ \psi_n\rangle$	L_{\min}
vert.	65%	1,157,180	103.5	4.2%	66.1%)	18.0%		0.611	16.0
	4d	797,777	109.3	3.0%	64.2%	·)	24.0%		0.854	11.0

Estimating false positive rates

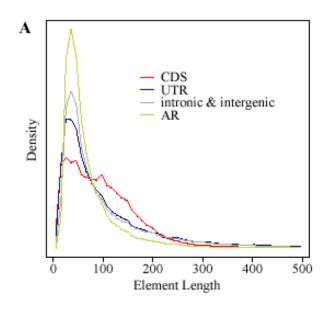

- simulate 1 Mb alignment
 - by sampling 4D sites (with replacement) from aligned
 CDSs
 - caveat: these not typical of all neutral sites!
- predict cons elts (using prev param estimates)
- frac of bases in cons elts:

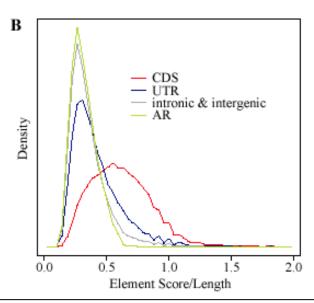
Group	65%	75%	MLE
vertebrate	0.00279^a	0.00362	0.00005
insect	0.00286	0.01026	0.00152
worm	0.00000	0.00000	0.00000
yeast	0.00006	0.00042	0.00023


- does not address (important) issue of rate of false positive bases within, or flanking, true conserved elements
- also: genes more G+C rich than genome average,
 & have somewhat higher mutation rate (due in part to more frequent CpGs)
 - ⇒ *underestimating* false pos rate
- also: randomization procedure destroys underlying mutation rate variation
 - ⇒ *underestimating* false pos rate

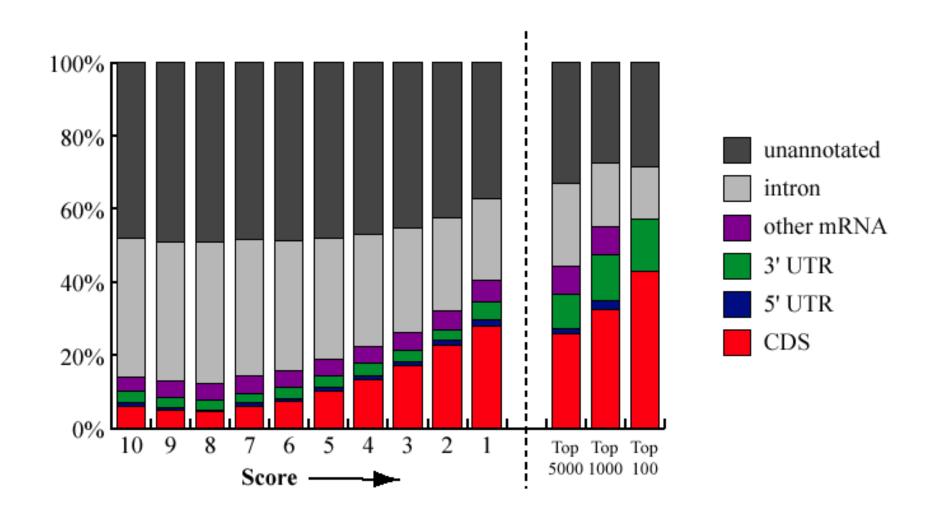
Characteristics of phastCons predicted conserved elements

- 1.18 million elements
- constitute 4.3% of human sequence
 - 66% of coding bases
 - 88% of coding exons overlap predicted elt
 - 23% of 5'UTR bases
 - 63% of exons
 - 18% of 3'UTR bases
 - 64% of exons
 - 42% of RNA gene bases
 - 56% of genes
 - 3.6% of intronic bases
 - 2.7% of intergenic bases
 - < 1% of mammalian 'ancestral repeats' (ARs)</p>


from Siepel A. et al. (2005). Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes. Genome Res. 15:1034-50.



from Siepel A. et al. (2005). Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes. Genome Res. 15:1034-50.


Length dist'ns of conserved elements

- lengths approx. geometrically distributed, avg 104 bp
- length dist'n depends on annotation category

from Siepel A. et al. (2005). Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes. Genome Res. 15:1034-50.

from Siepel A. et al. (2005). Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes. Genome Res. 15:1034-50.

Highly conserved elements (HCEs)

- top 5000 in score; cover 0.14% of human genome
 - mean length 781 bp (range 318-4922)
- probably a more sensible category to study than 'ultraconserved elements'
- non-randomly distributed with respect to genes
 - overrepresented in or near regulatory (DNA-, RNAbinding) genes, some other classes (e.g. ion channels)
 - overrepresented in 3' UTRs some associated with miRNA binding sites
 - also enriched in 'stable gene deserts'
- enriched for RNA-folding potential
- why long highly conserved regions? clusters of binding sites?

Table 1. Selected gene ontology (GO) categories of vertebrate genes overlapped by highly conserved elements

				CDS			5′ U	ΓR	3' UTR			Intron		
Term	Description	N^a	exp.b	obs. ^c	P ^{cl}	exp.	obs.	P	exp.	obs.	P	exp.	obs.	P
GO:0003677	DNA binding	1914	164.5	378	1.3e-62	59.4	158	1.5e-33	84.4	221	1.0e-45	28.6	80	5.1e-19
GO:0030528	transcription regulator activity	1125	96.7	251	1.7e-49	34.9	119	2.4e-34	49.6	140	8.5e-31	16.8	54	6.2e-15
GO:0007275	development	1746	150.1	266	1.2e-22	54.2	115	1.0e-15	77.0	122	1.1e-07	26.0	47	3.8e-05
GO:0005216	ion channel activity	334	28.7	79	3.8e-17	10.3	24	1.2e-04	14.7	16	4.0e-01	4.9	2	1.2e-01
GO:0006333	chromatin assembly/disassembly	153	13.1	47	3.1e-15	4.7	11	8.3e-03	6.7	17	4.2e-04	2.2	2	6.0e-01
GO:0007399	neurogenesis	384	33.0	82	5.2e-15	11.9	38	2.7e-10	16.9	36	1.7e-05	5.7	15	6.7e-04
GO:0009887	organogenesis	880	75.6	144	1.0e-14	27.3	67	6.2e-12	38.8	64	5.2e-05	13.1	27	3.0e-04
GO:0009653	morphogenesis	1099	94.4	169	1.3e-14	34.1	76	2.2e-11	48.5	77	3.1e-05	16.4	34	3.8e-05
GO:0008066	glutamate receptor activity	38	3.2	19	3.6e-11	1.1	6	1.0e-03	1.6	5	2.5e-02	_	_	_
GO:0008134	transcription factor binding	251	21.5	54	1.9e-10	7.7	21	3.8e-05	11.0	35	1.5e-09	3.7	10	4.5e-03
GO:0005515	protein binding	2179	187.3	252	1.4e-07	67.7	98	6.9e-05	96.1	141	8.9e-07	32.5	41	6.7e-02
GO:0007018	microtubule-based movement	55	4.7	18	3.9e-07	_	_	_	2.4	8	2.6e-03	0.8	2	2.0e-01
GO:0003723	RNA binding	601	51.6	88	4.2e-07	18.6	26	5.6e-02	26.5	66	5.5e-12	8.9	7	3.2e-01
GO:0007268	synaptic transmission	240	20.6	44	1.1e-06	7.4	12	7.2e-02	10.5	10	5.1e-01	_	_	_
GO:0030154	cell differentiation	200	17.1	37	6.4e-06	6.2	17	1.7e-04	8.8	15	3.2e-02	2.9	7	3.1e-02
GO:0007267	cell-cell signaling	532	45.7	77	3.5e-06	16.5	23	6.9e-02	23.4	24	4.9e-01	7.9	2	1.3e-02
GO:0016071	mRNA metabolism	188	16.1	35	9.8e-06	5.8	10	6.9e-02	8.2	29	3.7e-09	2.8	3	5.4e-01
GO:0006397	mRNA processing	170	14.6	30	1.2e-04	5.2	8	1.6e-01	7.5	24	4.5e-07	2.5	3	4.7e-01
GO:0006512	ubiquitin cycle	542	46.6	69	5.9e-04	16.8	22	1.2e-01	23.9	45	3.4e-05	8.1	3	3.6e-02

aNumber of genes in background set assigned to category.

from Siepel A. et al. (2005). Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes. Genome Res. 15:1034-50.

^bExpected number of genes overlapped under background distribution. ^cObserved number of genes overlapped.

^dP-value. Values of less than 5e-5 can be considered significant (see Methods).