Lecture 2

- Probability models for sequences
- Failure of equal frequency & independence assumptions
- Neutralist vs selectionist interpretations

Biology involves *probabilities*, at several levels:

- Fundamental laws of nature
- Mutations (imperfect replication)
- Transmission of DNA from parent to offspring in populations of individuals
- Random aspects of environment

Key Physical Laws Governing Living Organisms

- Individual atoms & molecules:
 - quantum mechanics / quantum electrodynamics
- Systems of molecules:
 - statistical mechanics / 2d law of thermodynamics
- These fundamental laws are essentially probabilistic!
- "The true logic of this world is in the calculus of probabilities" – James Clerk Maxwell
- *"I cannot believe that God plays dice with the cosmos"* Albert Einstein; nonetheless two of his three great 1905 papers dealt with statistical aspects of nature (photoelectric effect & Brownian motion)!

Probability Models of Sequences

- Sample questions in genome sequence analysis:
 - Is this sequence a splice site?
 - Is this sequence part of the coding region of a gene?
 - Are these two sequences evolutionarily related?
 - Does this sequence show evidence of selection?
- Computational analysis can't answer:
 - only generates *hypotheses* which must ultimately be tested by experiment.
- *But* hypotheses should
 - have some reasonable chance of being correct, and
 - carry indication of reliability.

- We use *probability models* of sequences to address such questions.
- Not the only approach, but usually the most powerful, because
 - seqs are products of evolutionary process which is *itself* probabilistic
 - want to detect biological "signal" against "noise" of background sequence or mutations.

- "All models are wrong; some models are useful." – George Box
- "What is simple is always wrong. What is not is unusable." Paul Valery
- "Everything should be made as simple as possible, but not simpler." Albert Einstein (?)

Basic Probability Theory Concepts

- A *sample space S* is set of all possible outcomes of a conceptual, repeatable experiment.
 - $-/S/<\infty$ in most of our examples.
 - e.g. S = all possible sequences of a given length.
- Elements of *S* are called *sample points*.
 - e.g. a particular seq = outcome of "experiment" of extracting seq of specified type from a genome.
- A *probability distribution P* on *S* assigns non-neg real number P(s) to each $s \in S$, such that

$$\sum_{s \in S} P(s) = 1$$

 $(\text{So } 0 \le P(s) \le 1 \quad \forall s)$

- Intuitively, P(s) = fraction of times one would get *s* as result of the expt, if repeated many times.

- A *probability space* (*S*,*P*) is a sample space *S* with a prob dist'n *P* on *S*.
- Prob dist'n on *S* is sometimes called a *probability model* for *S*, particularly if several dist'ns are being considered.
 - Write models as M_1, M_2 , probabilities as $P(s \mid M_1)$, $P(s \mid M_2)$.
 - e.g.
 - M_1 = prob dist'n for splice site seqs,
 - M_2 = prob dist'n for "background" (arbitrary genomic) seqs.

- An *event E* is a criterion that is true or false for each *s*∈*S*.
 - defines a subset of S (sometimes also denoted E).

-P(E) is defined to be $\sum_{s|E \text{ is true}} P(s)$.

• Events $E_1, E_2, ..., E_n$ are *mutually exclusive* if no two of them are true for the same point;

- then $P(E_1 \text{ or } E_2 \text{ or } \dots \text{ or } E_n) = \sum_{1 \le i \le n} P(E_i)$.

• If $E_1, E_2, ..., E_n$ are also *exhaustive*, i.e. every *s* in *S* satisfies E_i for some *i*, then $\sum_{1 \le i \le n} P(E_i) = 1$.

• For events *E* and *H*, the *conditional probability* of *E* given *H*, is

 $P(E \mid H) \equiv P(E \text{ and } H) / P(H)$

- (= prob that both *E* and *H* are true, given *H* is true) - undefined if P(H) = 0.
- *E* and *H* are (*statistically*) *independent* if P(E) = P(E | H)

(i.e. prob. *E* is true doesn't depend on whether *H* is true); or equivalently

P(E and H) = P(E)P(H).

Probabilities on Sequences

- Let *S* = space of DNA or protein sequences of length *n*. Possible assumptions for assigning probabilities to *S*:
 - *Equal frequency assumption:* All residues are equally probable at any position;
 - $P(E_r^{(i)}) = P(E_q^{(i)})$ for any two residues *r* and *q*,

- where $E_r^{(i)}$ means residue *r* occurs at position *i*, then

• Since for fixed *i* the $E_r^{(i)}$ are mutually exclusive and exhaustive,

 $P(E_r^{(i)}) = 1 / |A|$

where A = residue alphabet

 $P(E_r^{(i)}) = 1/20$ for proteins, 1/4 for DNA).

- *Independence assumption*: whether or not a residue occurs at a given position is independent of residues at other positions.

- Given above assumptions, the probability of the sequence s = ACGCG
 - (in the space S of all length 5 sequences) is calculated by considering 5 events:
 - Event 1 is that first nuc is A.
 - Event 2 is that 2^d nuc is C.
 - Event 3 is that 3^d nuc is G.
 - Event 4 is that 4th nuc is C.
 - Event 5 is that 5th nuc is G.

Probability = .25.

- Probability = .25.
- Probability = .25.

Probability
$$= .25$$
.

Probability = .25.

By independence assumption, prob of all 5 events occurring is the product $(.25)^5 = 1/1024$.

Since s is the only sequence satisfying all 5 conditions, P(s)= 1/1024.

• More generally, under equal freq and indep assumptions,

prob of nuc sequence of length $n = .25^n$, prob of protein sequence of length $n = .05^n$ in the space *S* of length *n* sequences. Failure of Equal Frequency Assumption for (Real) DNA

- For most organisms, the nucleotide composition is significantly different from .25 for each nucleotide, e.g.:
 - *H. influenza* .31 A, .19 C, .19 G, .31 T
 - P. aeruginosa .17 A, .33 C, .33 G, .17 T
 - M. janaschii .34 A, .16 C, .16 G, .34 T
 - S. cerevisiae .31 A, .19 C, .19 G, .31 T
 - C. elegans .32 A, .18 C, .18 G, .32 T
 - H. sapiens .29 A, .21 C, .21 G, .29 T

- Note approximate symmetry: $A \cong T, C \cong G$,
 - even though we're counting nucs on just one strand.
 - Expect *exact* equality when counting both strands
- Explanation:
 - Although individual biological features may have nonsymmetric composition (local *asymmetry*),
 - usually features are distributed approx *randomly* w.r.t. strand,
 - so local asymmetries *cancel*, yielding overall symmetry.

General Hypotheses Regarding Unequal Frequency

- Neutralist hypothesis: *mutation bias* e.g. due to nucleotide pool composition
- Selectionist hypothesis: *selection*
 - selection on (many) particular nucleotides
 - selection on mutational bias mechanisms

Failure of independence assumption

Nucleotide Freqs (*C. elegans* chr. 1): A 4575132 (.321) ; C 2559048 (.179) ; G 2555862 (.179); T 4582688 (.321)

dinucleotide frequencies (5' nuc to left, 3' nuc at top - e.g. obs freq
of ApC is .047): (Note "symmetry"!)

	Observed				Expected	(unde	er inde	ependend	ce)
	A	С	G	Т	A	С	G	Т	
Α	0.135	0.047	0.051	0.088	0.103	0.057	0.057	0.103	
С	0.061	0.035	0.033	0.051	0.057	0.032	0.032	0.058	
G	0.063	0.034	0.034	0.047	0.057	0.032	0.032	0.057	
Т	0.061	0.064	0.061	0.135	0.103	0.058	0.057	0.103	

	Obsei	rved /	Expected		
	A	С	G	Т	
Α	1.314	0.818	0.885	0.853	
С	1.055	1.075	1.031	0.886	
G	1.106	1.062	1.074	0.818	
Т	0.597	1.105	1.056	1.313	

Conditional probability (in *C. elegans*) of a given nucleotide (top) occurring, given the preceding nucleotide (left)

	A	С	G	Т
A	0.421	0.147	0.159	0.274
С	0.338	0.193	0.185	0.284
G	0.355	0.190	0.192	0.263
Т	0.191	0.198	0.189	0.421

Deviations From Expectation

- Underrepresentation of *TpA*: found in nearly all genomes;
 - reason unknown:
 - neutral (mutation patterns)?
 - selection?
- Overrepresentation of *ApA*, *TpT*, *CpC*, *GpG* also frequently observed in other organisms.
- Unlike mammalian genomes, no underrepresentation of CpG
 - *C*p*G* not methylated in *C. elegans* (or most other non-vertebrates).

Dinucleotide Freqs – H. sapiens Chr.21

Nucleotide Freqs:

A 10032226 0.297; T 9962530 0.295 G 6908202 0.204; C 6921020 0.205 Entropy: 1.976 bits

	Observed Dinuc Freqs				Expected (a	Expected (under independence)			
	A	С	G	Т	A (С	G	т	
A	0.099	0.051	0.069	0.078	0.088 0.0	061	0.061	0.087	
С	0.073	0.052	0.011	0.069	0.061 0.0	042	0.042	0.060	
G	0.059	0.043	0.052	0.050	0.061 0.0	042	0.042	0.060	
т	0.066	0.059	0.072	0.098	0.087 0.0	060	0.060	0.087	

	Observed / Expected						
	A	С	G	Т			
Α	1.124	0.839	1.139	0.891			
С	1.204	1.243	0.260	1.139			
G	0.974	1.025	1.245	0.839			
т	0.752	0.976	1.204	1.125			

Dinucleotide Freqs – H. sapiens Chr.22

Nucleotide Freqs:

Α	8745910	0.261; Т	8720493	0.261
G	7999585	0.239; C	7997931	0.239
Entr	opy: 1.99	9 bits		

	Observed Dinuc Freqs				Expected (under independence			
	A	С	G	Т	A C G T			
Α	0.077	0.051	0.075	0.058	0.068 0.062 0.062 0.068			
С	0.077	0.071	0.016	0.075	0.062 0.057 0.057 0.062			
G	0.061	0.057	0.071	0.051	0.062 0.057 0.057 0.062			
т	0.047	0.061	0.077	0.076	0.068 0.062 0.062 0.068			

	Observed / Expected						
	A	С	G	Т			
A	1.125	0.817	1.205	0.855			
С	1.233	1.236	0.285	1.206			
G	0.975	0.989	1.237	0.818			
Т	0.684	0.977	1.233	1.124			