Lecture 3

- Background sequence models
 Markov models
 - proteins

• Site models

Failure of independence assumption

Nucleotide Freqs (*C. elegans* chr. 1): A 4575132 (.321) ; C 2559048 (.179) ; G 2555862 (.179); T 4582688 (.321)

dinucleotide frequencies (5' nuc to left, 3' nuc at top - e.g. obs freq
 of ApC is .047): (Note "symmetry"!)

	Ob	oserved	1		Expected (under independence))
	A	С	G	Т	A C G T	
Α	0.135	0.047	0.051	0.088	0.103 0.057 0.057 0.103	
С	0.061	0.035	0.033	0.051	0.057 0.032 0.032 0.058	
G	0.063	0.034	0.034	0.047	0.057 0.032 0.032 0.057	
Т	0.061	0.064	0.061	0.135	0.103 0.058 0.057 0.103	

	Obsei	rved /	Expected				
	A	С	G	Т			
Α	1.314	0.818	0.885	0.853			
С	1.055	1.075	1.031	0.886			
G	1.106	1.062	1.074	0.818			
Т	0.597	1.105	1.056	1.313			

Conditional probability (in *C. elegans*) of a given nucleotide (top) occurring, given the preceding nucleotide (left)

	A	С	G	Т		
A	0.421	0.147	0.159	0.274		
С	0.338	0.193	0.185	0.284		
G	0.355	0.190	0.192	0.263		
Т	0.191	0.198	0.189	0.421		

Markov models

Conditional probabilities (as on the previous slide) can be used to define a *first-order Markov model* (or *Markov chain model*)
 for sequence probabilities:

$$P(s_1 \ s_2 \ s_3 \ \cdots \ s_n) \\ \equiv P(s_1) \ P(s_2 \ / \ s_1) \ P(s_3 \ / \ s_2) \ \cdots \ P(s_n \ / \ s_{n-1})$$

- Similarly, one can define an a *order-k Markov model* in which the probability of s_i is conditional on s_{i-k} … s_{i-2} s_{i-1}
 (i.e. the *k* preceding residues)
- Note that the required number of parameters is exponential in *k*
- The *independence model* (which is usually good enough for us!) = the *order-0 Markov model*

Background models for *protein* sequences

• The *independence* assumption is (usually) OK

• The equal frequency assumption is not

Failure of equal frequency assumption for proteins

AMINO ACID	FREQUENCY.	# SYNON CODONS.
L	.093	6
A	.075	4
S	.072	6
G	.069	4
V	.065	4
E	.063	2
K	.059	2
Т	.058	4
Ι	.057	3
D	.053	2
R	.052	6
Р	.049	4
Ν	.045	2
F	.041	2
Q	.040	2
Y	.032	2
М	.024	1
Н	.022	2
С	.017	2
W	.013	1

Hypotheses to explain correlation between frequency and # codons

- (*Neutralist*):
 - Nucleotide sequences that encode proteins are on average close to random,
 - so amino acid freqs are proportionate to codon freqs in random DNA.
- (Selectionist):
 - The genetic code evolved concurrently with early proteins, and
 - is adapted so that the most useful amino acids are encoded by the most codons.
- The truth is probably some combination of these!
 - Dependence of aa composition on genomic G+C content is consistent with neutralist hypothesis

Deviations from randomness

- Compute, for each residue r, the ratio obs_r / exp_r of
 - the observed frequency obs_r, to
 - the expected frequency \exp_r if coding sequences were random:

$$\exp_r = (\# \text{codons encoding } r) / 61$$

Amino Acid	Obs/Exp	1 st codon	2^{nd} codon	3 rd codon	# codons
		base	base	base	
E	1.92	G	A	R	2
K	1.80	А	А	R	2
D	1.62	G	А	Y	2
М	1.46	А	Т	G	1
Ν	1.37	А	А	Y	2
F	1.25	Т	Т	Y	2
Q	1.22	С	А	R	2
Ι	1.16	А	Т	Not G	3
А	1.14	G	С	Ν	4
G	1.05	G	G	Ν	4
V	.99	G	Т	Ν	4
Y	.98	Т	A	Y	2
L	.95	C(T)	Т	Ν	6
Т	.88	А	С	Ν	4
W	.79	Т	G	G	1
Р	.74	С	С	Ν	4
S	.73	T(A)	C(G)	Ν	6
Н	.67	С	A	Y	2
R	.53	C(A)	G	Ν	6
С	.52	Т	G	Y	2

Obs/Exp Ratios

- All observed values are within factor of 2 of expected;
 - last column suggests trend towards "correcting" disparate # codons
- At codon position 1,
 - purines (A and G) predominate among over-represented amino acids,
 - pyrimidines (*C* and *T*) among under-represented amino acids.
- At codon position 2,
 - -A and T predominate among over-represented amino acids,
 - *C* and *G* among under-represented amino acids.
- Hypotheses to explain *RWR* codon preference:
 - Vestige of ancestral code? (Shepherd)
 - Over-represented pattern more efficiently translated?

Site Models

- Probability models for short sequences, such as:
 - splice sites
 - translation start sites
 - promoter elements
 - -protein "motifs"

- Assumptions:
 - different examples of site can be aligned *without gaps* (indels) such that tend to have same residues in same positions
 - drop equal freq assumption: allow *position-specific freqs*
 - retain *independence* assumption (for now)

- Applies to short segments (< 30 residues) where
 - precise residue spacing is structurally or functionally important, and
 - certain positions are highly conserved
- Examples:
 - DNA/RNA sequences binding a single protein or RNA molecule
 - Protein internal regions structurally constrained due to folding requirements; or
 - protein surface regions constrained because bind certain ligands

Construction of Site Models

- Collect examples of site
- Align (without gaps)
- Count occurrences of residues at each position
- Convert to frequencies

The Genetic Code

Codon Usage

- In most organisms, the codons for an amino acid are not used with equal frequency "synonymous codon bias".
- For many organisms this may reflect differences in translational efficiency & accuracy: more highly expressed genes have stronger biases.
- For mammals codon usage mainly reflects the GC content of the region in which the gene is found; reasons for GC content variation unknown.
- Even though we don't fully understand the biological basis for this bias, it provides a powerful tool for gene identification!

From Initial sequencing and analysis of the human genome, International Human Genome Sequencing Consortium, Nature 409, S	860-921 (2001)
$Phe \begin{bmatrix} 171 \text{ UUU} \\ 203 \text{ UUC} \end{bmatrix} \xrightarrow{AAA 0} \begin{bmatrix} 147 \text{ UCU} \\ 172 \text{ UCC} \end{bmatrix} \xrightarrow{AGA 10} Tyr \begin{bmatrix} 124 \text{ UAU} \\ 158 \text{ UAC} \end{bmatrix} \xrightarrow{AUA 1} Cys \begin{bmatrix} 99 \text{ UGU} \\ 119 \text{ UGC} \end{bmatrix}$	∆ ACA 0 GCA 30
Leu 73 UUA UAA 8 118 UCA UGA 5 stop 0 UAA UUA 0 stop 0 UGA - 125 UUG CAA 6 45 UCG CGA 4 stop 0 UAG CUA 0 Trp 122 UGG -	- UCA 0 - CCA 7
$\begin{bmatrix} 127 \text{ CUU} & 7 \text{ AAG } 13 \\ 187 \text{ CUC} & 7 \text{ GAG } 0 \end{bmatrix} \begin{bmatrix} 175 \text{ CCU} & 7 \text{ AGG } 11 \\ 197 \text{ CCC} & 7 \text{ GGG } 0 \end{bmatrix} = \begin{bmatrix} 104 \text{ CAU} \\ 147 \text{ CAC} \end{bmatrix} \begin{bmatrix} AUG & 0 \\ 0 \text{ GUG } 12 \\ Arg \end{bmatrix} \begin{bmatrix} 47 \text{ CGU} \\ 107 \text{ CGC} \end{bmatrix}$	7 ACG 9 GCG 0
$\begin{bmatrix} 69 \text{ CUA} & - \text{ UAG 2} \\ - 392 \text{ CUG} & - \text{ CAG 6} \end{bmatrix} \begin{bmatrix} 170 \text{ CCA} & - \text{ UGG 10} \\ - 69 \text{ CCG} & - \text{ CGG 4} \end{bmatrix} \begin{bmatrix} 121 \text{ CAA} & - \text{ UUG 11} \\ - 343 \text{ CAG} & - \text{ CUG 21} \end{bmatrix} \begin{bmatrix} 63 \text{ CGA} & - 115 \text{ CGG} & - 115 \text{ CGG} \end{bmatrix}$	- UCG 7 - CCG 5
$IIe \begin{bmatrix} 165 \text{ AUU} & 7 \text{ AAU} & 13 \\ 218 \text{ AUC} & \text{GAU} & 1 \\ Thr \end{bmatrix} \begin{bmatrix} 131 \text{ ACU} & 7 \text{ AGU} & 8 \\ 192 \text{ ACC} & \text{GGU} & 0 \\ 199 \text{ AAC} & 2 \text{ GUU} & 33 \\ 199 \text{ AAC} & 2 \text{ GUU} & 33 \\ 191 \text{ AGC} & 2 \text{ GUU} & 33 \\ 191 \text{ GU} & 2 \text{ GUU} & 33 \\ 191 \text{ GU} & 2 \text{ GUU} & 33 \\ 191 \text{ GU} & 2 \text{ GUU} & 33 \\ 191 \text{ GU} & 2 \text{ GU} & 33 \\ 191 \text{ GU} & 2 \text{ GU} & 33 \\ 191 \text{ GU} & 2 \text{ GU} & 33 \\ 191 \text{ GU} & 2 \text{ GU} & 33 \\ 191 \text{ GU} & 2 \text{ GU} & 33 \\ 191 \text{ GU} & 33$	GCU 7
Met - 221 AUG - CAU 17 - 63 ACG - CGU 7 - 248 AAA - UUU 16 Arg 113 AGA - Met - 221 AUG - CAU 17 - 63 ACG - CGU 7 - 331 AAG - CUU 22 - 110 AGG -	- UCU 5 - CCU 4
$\begin{bmatrix} 111 \text{ GUU} & 7 \text{ AAC 20} \\ 146 \text{ GUC} & \text{GAC 0} \end{bmatrix} \begin{bmatrix} 185 \text{ GCU} & 7 \text{ AGC 25} \\ 282 \text{ GCC} & \text{GGC 0} \end{bmatrix} \begin{bmatrix} 230 \text{ GAU} \\ 262 \text{ GAC} \end{bmatrix} \xrightarrow{\text{AUC 0}} \begin{bmatrix} 112 \text{ GGU} \\ 230 \text{ GGC} \end{bmatrix} \begin{bmatrix} 112 \text{ GGU} \\ 230 \text{ GGC} \end{bmatrix}$	ACC 0 GCC 11
$\begin{bmatrix} 72 \text{ GUA} & - \text{ UAC 5} \\ 288 \text{ GUG} & - \text{ CAC 19} \end{bmatrix} \begin{bmatrix} 160 \text{ GCA} & - \text{ UGC 10} \\ 74 \text{ GCG} & - \text{ CGC 5} \end{bmatrix} \begin{bmatrix} 301 \text{ GAA} & - \text{ UUC 14} \\ 404 \text{ GAG} & - \text{ CUC 8} \end{bmatrix} \begin{bmatrix} 168 \text{ GGA} & - \text{ CUC 8} \\ 160 \text{ GGG} & - \text{ CUC 8} \end{bmatrix}$	" UCC 5 " CCC 8

Figure 34 The human genetic code and associated tRNA genes. For each of the 64 codons, we show: the corresponding amino acid; the observed frequency of the codon per 10,000 codons; the codon; predicted wobble pairing to a tRNA anticodon (black lines); an unmodified tRNA anticodon sequence; and the number of tRNA genes found with this anticodon. For example, phenylalanine is encoded by UUU or UUC; UUC is seen more frequently, 203 to 171 occurrences per 10,000 total codons; both codons are expected to be decoded by a single tRNA anticodon. The modified anticodon sequence in the mature tRNA genes found with this anticodon. The modified anticodon sequence in the mature tRNA is not shown, even where post-transcriptional modifications can be confidently predicted (for example, when an A is used to decode a U/C third position, the A is almost certainly an inosine in the mature tRNA). The Figure also does not show the number of distinct tRNA species (such as distinct sequence families) for each anticodon; often there is more than one species for each anticodon.

from http://departments.oxy.edu/biology/Stillman/bi221/111300/processing_of_hnrnas.htm

(Jonathon Stillman, Grace Fisher-Adams)

Nucleotide Counts for														
	81	92	<i>C</i> .	ele	ga	ns :	5' \$	Spl	ice	Sit	es			
			5	'SS	SS									
- Exon				Int	Intron									
A	3404	4644	1518	0	0	4836	5486	837	1632	2189	2278	2355		
С	1850	1224	583	0	14	118	588	237	801	771	889	986		
G	1562	912	4891	8192	0	1890	672	6164	589	962	1056	827		
Τ	1376	1412	1200	0	8178	1348	1446	954	5170	4270	3969	4024		
CONSEN	SUS X	x a	g	G	Т	a	a	g	t	t	W	t		
A	0.416	0.567	0.185	0.000	0.000	0.590	0.670	0.102	0.199	0.267	0.278	0.287		
С	0.226	0.149	0.071	0.000	0.002	0.014	0.072	0.029	0.098	0.094	0.109	0.120		
G	0.191	0.111	0.597	1.000	0.000	0.231	0.082	0.752	0.072	0.117	0.129	0.101		
Τ	0.168	0.172	0.146	0.000	0.998	0.165	0.177	0.116	0.631	0.521	0.484	0.491		

5' Splice Sites – C. elegans

Conserved Domain in RecR and Class I Topisomerases

RLAEEKITEVILATNPTVEGEATANYIAELC RecR RLODDOVTEVILATNPNIEGEATAMYISRLL RecM **RVDDVGITEVIIATDPNTEGEATATYLVRMV** RecR TrsI IFKENKIDEVIIATDPAREGENIAYKILNQL KQLAEKADHIYLATDLDREGEAIAWRLREVI TOP1 AELLKQANTIIVATDSDREGENIAWSIIHKA ORF1 KDALKDADELILATDEDREGKVISWHLLQLL TOP1 TOP1 TIFDKRVKTIILATDAAAEGEYIGRNILYRL TOP3 KREARNADYLMIWTDCDREGEYIGWEIWQEA KRFLHEASEIVHAGDPDREGQLLVDEVLDYL TOP3 RGYR RNLAVEADEVLIGTDPDTEGEKIAWDLYLAL

CONSENSUS xxxxxxxXU&uatDxxxEGexxxxXUxxxu

Consensus key:

Uppercase: all residues chemically similar

lowercase: most are

U,u: bulky aliphatic (I,L,V)

From RL Tatusov, SF Altschul, and EV Koonin, PNAS 91: 12091-12095

&: bulky hydrophobic (I,L,V,M,F,Y,W)

Probability Models for Sites (assuming independence!)

- For each position i, $1 \le i \le n$, let P_i be a prob dist'n on the alphabet of residues
 - e.g. constructed using counts at that position in a sample of sites.
 - $P_i(r)$ for each residue *r* is the probability that *r* occurs at position *i* in a sequence.
- Prob dist'n *P* on the space *S* of sequences of length *n* is defined by

$$P(s) = \prod_{1 \le i \le n} P_i(s_i)$$

where $s = s_1 s_2 \dots s_n$

Zero Probabilities

- If $P_i(r) = 0$ for some *i* and *r*, then P(s) = 0 for some sequences.
 - may or may not be desirable
- If due to failure to observe residue because of small sample size,
 - should perform "small-sample correction" to change $P_i(r)$ to a small non-zero value.
 - usually done by adding 'pseudocounts' to each value in the counts matrix;
 - e.g. add 1 to each cell (has justification in Bayesian statistics)
 - Particularly an issue with proteins, due to larger alphabet size.
- If reflects real biological constraints
 - then leave as 0.
 - e.g. requirement for G at position +1 (first intronic base) in 5'ss

Independence assumption failures for Site Models

- 5' sites (Burge-Karlin observation)
- Offsetting changes for interacting residues
 - RNA stems,
 - protein motifs

Nucleotide Counts for *C. elegans* 5' Splice Sites

Failure of independence for 5' splice sites: G vs. H ('not G') at position -1

H in position –1 :

А	1434	1664	1518	0	0	2032	2662	98	479	694	783	912
С	633	546	583	0	5	36	177	22	225	250	350	393
G	628	553	0	3301	0	943	187	3063	134	329	405	279
Т	606	538	1200	0	3296	290	275	118	2463	2028	1763	1717
А	0.434	0.504	0.460	0.000	0.000	0.616	0.806	0.030	0.145	0.210	0.237	0.276
С	0.192	0.165	0.177	0.000	0.002	0.011	0.054	0.007	0.068	0.076	0.106	0.119
G	0.190	0.168	0.000	1.000	0.000	0.286	0.057	0.928	0.041	0.100	0.123	0.085
Т	0.184	0.163	0.364	0.000	0.998	0.088	0.083	0.036	0.746	0.614	0.534	0.520

G in position –1 :

А	1970	2980	0	0	0	2804	2824	739	1153	1495	1495	1443
С	1217	678	0	0	9	82	411	215	576	521	539	593
G	934	359	4891	4891	0	947	485	3101	455	633	651	548
Т	770	874	0	0	4882	1058	1171	836	2707	2242	2206	2307
А	0.403	0.609	0.000	0.000	0.000	0.573	0.577	0.151	0.236	0.306	0.306	0.295
С	0.249	0.139	0.000	0.000	0.002	0.017	0.084	0.044	0.118	0.107	0.110	0.121
G	0.191	0.073	1.000	1.000	0.000	0.194	0.099	0.634	0.093	0.129	0.133	0.112
Т	0.157	0.179	0.000	0.000	0.998	0.216	0.239	0.171	0.553	0.458	0.451	0.472

5' Splice Sites – C. elegans

Why the correlation?

- Splicing involves pairing of a small RNA (U1 RNA) with the transcript at the 5' splice site (positions -2 to +7).
- The RNA is complementary to the 5' ss consensus sequence.
- A mismatch at position –1 tends to destabilize the pairing, & makes it more important for other positions to be correctly paired.

Nucleotide Counts for 8192 *C. elegans* 5' Splice Sites

complementary to portion of U1 RNA

from http://departments.oxy.edu/biology/Stillman/bi221/111300/processing_of_hnrnas.htm

(Jonathon Stillman, Grace Fisher-Adams)

3' Splice Sites – C. elegans

from http://departments.oxy.edu/biology/Stillman/bi221/111300/processing_of_hnrnas.htm

(Jonathon Stillman, Grace Fisher-Adams)

• a 3' splice site includes more than one 'site' (as we originally defined it)!