Lecture 4

- Comparing probability models: *likelihood ratios*
 - -Hypothesis testing
 - Neyman-Pearson lemma
- Weight matrices
- Score distributions

Comparing Alternative Probability Models

- We will want to consider more than one model at a time, in following situations:
 - To differentiate between two or more hypotheses about a sequence
 - To generate increasingly refined probability models that are progressively more accurate

- First situation arises in testing biological assertion, e.g. "is this a coding sequence?"
 - Compare two models:
 - 1. model associated with a hypothesis H_{coding} ,
 - assigns each sequence the prob of observing it under expt of drawing a coding sequence at random from genome
 - 2. model associated with a hypothesis $H_{noncoding}$,
 - assigns each sequence the prob of observing it under expt of drawing a non-coding sequence at random

Likelihood Ratios

• The *likelihood* of a model *M* given an observation *s* is

 $L(M \mid s) = P(s \mid M)$

This is *not* the *probability* of the model! – (the sum over all models is not 1).

• The *likelihood ratio* (*LR*) of two models M_a and M_0 is given by $LR(M_a, M_0 \mid s) = \frac{L(M_a \mid s)}{L(M_0 \mid s)}$

The numerator and denominator may both be very small!

• The *log likelihood ratio* (*LLR*) is the logarithm of the likelihood ratio.

Simple Hypothesis Testing

- Suppose we wish to decide between two models:
 - M_a (the *alternative hypothesis*), and
 - M_0 (the *null hypothesis*)

using an observation s from a sample space S. (e.g.

- *s* a sequence,
- $-M_a$ a site model
- M_0 a "background" (non-site) model.
- Strategy:
 - choose a subset $C \subset S$, called the *critical region* for the comparison.
 - If s falls within C, reject M_0 (accept M_a),
 - otherwise accept M_0 (reject M_a).

Types of Errors with Hypothesis Test

- a *Type I error* occurs if we reject M_0 when it is true.
 - For a given critical region *C*, the prob of committing a Type I error is denoted α_C $\alpha_C = P(C \mid M_0) = \sum_{s \in C} P(s \mid M_0)$
- α_C is called the *significance level* of the test

Sample Space S – probabilities under M_0

- a *Type II error* occurs if we accept M_0 when it is false.
 - For a given *C*, prob of committing a Type II error is denoted β_C

$$\beta_C = \sum_{s \notin C} P(s \mid M_a) = 1 - P(C \mid M_a)$$

• $\pi_C = 1 - \beta_C$ is called the *power* of the test.

Sample Space S – probabilities under M_a

- Designing a test involves a tradeoff between significance and power
 - smaller *C* gives smaller Type I error but larger Type II error (lower power).

Likelihood Ratio Tests

• A *likelihood ratio test* of models M_a and M_0 is a hypothesis test of the two models, with critical region *C* defined by

$$C = C_{\Lambda} = \{ s \mid LR(M_a, M_0 \mid s) \ge \Lambda \}$$

for some non-negative constant Λ , the *cutoff value*.

- Neyman-Pearson lemma motivates use of the *likelihood ratio* as an optimal *discriminator*, or "score"
 - even in contexts where we aren't explicitly testing hypotheses.
- any monotonic function *f*(*LR*) of likelihood ratio has equivalent optimality properties
 - because defines the same set of critical regions:

 $LR(M_a, M_0 \mid s) \ge \Lambda \Leftrightarrow f(LR(M_a, M_0 \mid s)) \ge f(\Lambda)$

• convenient to take *f* to be the log function, in which case we get the *log likelihood ratio*.

Neyman-Pearson lemma

- Let M_a and M_0 be two models, and C_A the critical region defined by a likelihood ratio test of M_a vs. M_0 with
 - cutoff value Λ ,
 - significance level α_A , and
 - power $\pi_A = 1 \beta_A$.
- *Then* if *C* is any other critical region, we have
 - If $\alpha_C < \alpha_A$, then $\pi_C < \pi_A$ (and $\beta_C > \beta_A$)
 - If $\alpha_C = \alpha_A$, then $\pi_C \le \pi_A$ (and $\beta_C \ge \beta_A$)

In other words, the likelihood ratio test with significance level α_A is the most powerful test

- (has the lowest type II error rate)

with that significance level.

• *Proof*: Suppose $\alpha_C < \alpha_A$. Then

$$\sum_{s\in C} P(s \mid M_0) < \sum_{s\in C_\Lambda} P(s \mid M_0)$$

Subtract from both sides the terms involving $s \in C \cap C_A$ This leaves

(1)
$$\sum_{s \in C \setminus C_{\Lambda}} P(s \mid M_0) < \sum_{s \in C_{\Lambda} \setminus C} P(s \mid M_0)$$

• By definition of the likelihood ratio test, for any observation *s*,

$$s \in C_{\Lambda} \Leftrightarrow P(s \mid M_a) \ge \Lambda P(s \mid M_0)$$

• From this, it follows that

(2)
$$\sum_{s \in C \setminus C_{\Lambda}} \frac{1}{\Lambda} P(s \mid M_a) < \sum_{s \in C \setminus C_{\Lambda}} P(s \mid M_0)$$

and
(3)
$$\sum_{s \in C_{\Lambda} \setminus C} P(s \mid M_0) \leq \sum_{s \in C_{\Lambda} \setminus C} \frac{1}{\Lambda} P(s \mid M_a)$$

• Combining (2), (1), and (3)

$$\sum_{s \in C \setminus C_{\Lambda}} \frac{1}{\Lambda} P(s \mid M_{a}) < \sum_{s \in C \setminus C_{\Lambda}} P(s \mid M_{0}) < \sum_{s \in C_{\Lambda} \setminus C} P(s \mid M_{0}) \le \sum_{s \in C_{\Lambda} \setminus C} \frac{1}{\Lambda} P(s \mid M_{a})$$

so (cancelling the common factor 1 / A)

$$\sum_{s \in C \setminus C_{\Lambda}} P(s \mid M_a) < \sum_{s \in C_{\Lambda} \setminus C} P(s \mid M_a)$$

so, adding in the terms corresponding to $s \in C \cap C_A$ $\sum_{s \in C} P(s | M_a) < \sum_{s \in C_A} P(s | M_a)$ i.e $\pi_C < \pi_A$ The other part of the lemma ($\pi_C \le \pi_A$ if $\alpha_C = \alpha_A$) is proved similarly.

Weight Matrices for Site Models

• LR for sites: (prob under site model) / (prob under non-site (background) model)

$$\frac{P(s \mid M_{\text{site}})}{P(s \mid M_{\text{background}})} = \frac{\prod_{1 \le i \le n} P_i(s_i \mid M_{\text{site}})}{\prod_{1 \le i \le n} P_i(s_i \mid M_{\text{background}})}$$

•
$$\text{LLR} = \sum_{1 \le i \le n} \log(P_i(s_i \mid M_{\text{site}})) - \log(P_i(s_i \mid M_{\text{background}}))$$

- compute by reading from a *matrix* whose *i*-th column contains values $\log(P_i(r | M_{\text{site}})) \log(P_i(r | M_{\text{background}})))$ for each residue *r* (with *r* labelling the rows).
 - We use log₂.

Example: 3' splice sites in C. elegans

- For *background distribution* take
 - genomic residue freqs computed from *C. elegans* chrom. I:
 - A 4,575,132: 0.321
 - C 2,559,048: 0.179
 - G 2,555,862: 0.179
 - T 4,582,688: 0.321
 - other choices are possible, e.g. composition of transcribed regions
- For the *site distribution* we take
 - site residue freqs from 8192 sites:

Weight Matrix – 3' Splice Sites

SITE FREQUENCIES:

0.400 0.429 0.282 0.058 0.008 0.092 0.029 1.000 0.000 0.410 0.293 0.307 Α 0.081 0.029 0.834 0.118 0.079 0.016 0.135 0.000 0.000 0.156 0.187 0.225 С 0.072 0.070 0.063 0.018 0.005 0.073 0.001 0.000 1.000 0.310 0.159 0.191 G 0.409 0.896 0.700 0.000 0.124 0.422 0.574 0.971 0.135 0.000 0.361 0.276 Т

BACKGROUND FREQUENCIES:

0.321 0.321 0.321 0.321 0.321 0.321 0.321 0.321 0.321 0.321 0.321 0.321 Α 0.179 0.179 0.179 0.179 0.179 0.179 0.179 0.179 0.179 0.179 0.179 0.179 С 0.179 0.179 0.179 0.179 G 0.179 0.179 0.179 0.179 0.179 0.179 0.179 0.179 0.321 0.321 0.321 0.321 0.321 0.321 0.321 0.321 0.321 0.321 0.321 0.321 Т

WEIGHTS:

0.32 0.42 -2.46-5.29 -1.79-3.451.64 - 99.000.36 -0.13Α -0.18-0.06-0.60-1.18-1.15-2.64-3.51 -0.412.22 - 99.00 - 99.00-0.200.06 0.33 С -1.31-1.35-1.51 -3.35-5.23 -1.30 -6.93 -99.00 2.48 0.79 -0.170.10 G 0.35 0.39 0.84 1.48 1.60 1.12 -1.24 - 99.00 - 99.00-1.370.17 -0.22Т

Scoring a Candidate 3' Splice Site

A	0.32	0.42	-0.18	-2.46	-5.29	-1.79	-3.45	1.64	-99.00	0.36	-0.13	-0.06	
С	-0.60	-1.18	-1.15	-2.64	-3.51	-0.41	2.22	-99.00	-99.00	-0.20	0.06	0.33	
G	-1.31	-1.35	-1.51	-3.35	-5.23	-1.30	-6.93	-99.00	2.48	0.79	-0.17	0.10	
Т	0.35	0.39	0.84	1.48	1.60	1.12	-1.24	-99.00	-99.00	-1.37	0.17	-0.22	
			0				0		0				
	т	т	C	т	т	A	C	A	G	A	A	т	
	0.25		. 1 15	. 1 40	1 0	. 1 70		1 1 64			. 0 1 2		- 7 00
	0.35	+ 0.39	+-1.15	+ 1.48	+ 1.60	+-1./9	+ 2.22	+ 1.64	+ 2.48	+ 0.36	+-0.13	+-0.22	= 7.23

- General def.: a *weight matrix* W has entries w_{rj} indexed by residues $r \in A$, and $1 \le j \le n$
- *score* of a sequence $s = (s_1 s_2 \dots s_n)$ is

$$\sum_{1 \le j \le n} W_{s_j j}$$

• In the site case,

$$w_{rj} = \log(P_j(r \mid M_{site})) - \log(P_j(r \mid M_{background})))$$

Score Distributions (AG sites)– 3' SS Weight Matrix

Score Distributions (AG sites)– 3' SS Weight Matrix

Some Issues for Site Weight Matrices (to be discussed later)

- Can derive *theoretical* probability distribution for scores, and compare with above *empirical* distributions
- Small sample correction to frequencies: pseudocounts
- Avoiding *overfitting* (e.g. using too large a window)