
Lecture 4

• Comparing probability models: 

likelihood ratios

– Hypothesis testing 

– Neyman-Pearson lemma

• Weight matrices

• Score distributions
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Comparing Alternative 

Probability Models

• We will want to consider more than one model at a 

time, in following situations:

– To differentiate between two or more hypotheses about 

a sequence

– To generate increasingly refined probability models 

that are progressively more accurate
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• First situation arises in testing biological assertion, 

e.g. “is this a coding sequence?” 

– Compare two models:

1. model associated with a hypothesis Hcoding, 

– assigns each sequence the prob of observing it under expt of 

drawing a coding sequence at random from genome

2. model associated with a hypothesis Hnoncoding, 

– assigns each sequence the prob of observing it under expt of 

drawing a non-coding sequence at random
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Likelihood Ratios
• The likelihood of a model M given an observation 

s is

L(M | s) = P(s | M)

This is not the probability of the model! – (the sum 
over all models is not 1).

• The likelihood ratio (LR) of two models Ma and 
M0 is given by

The numerator and denominator may both be very 
small! 

• The log likelihood ratio (LLR) is the logarithm of 
the likelihood ratio.
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Simple Hypothesis Testing

• Suppose we wish to decide between two models:

– Ma (the alternative hypothesis), and 

– M0 (the null hypothesis) 

using an observation s from a sample space S. (e.g. 

– s a sequence, 

– Ma a site model

– M0 a “background” (non-site) model. 

• Strategy: 

– choose a subset C  S, called the critical region for the 
comparison. 

– If s falls within C, reject M0 (accept Ma), 

– otherwise accept M0 (reject Ma).
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Types of Errors with Hypothesis Test

• a Type I error occurs if we reject M0 when it is 
true. 

– For a given critical region C, the prob of 
committing a Type I error is denoted C

C = P(C | M0) = sC P(s | M0)

• C is called the significance level of the test
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Sample Space S – probabilities under M0

Reject M0 (Type I error if M0 true)

C

1 - C

Critical Region C

Accept M0
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• a Type II error occurs if we accept M0 when it 
is false. 

– For a given C, prob of committing a Type II error 
is denoted C

C = sC P(s | Ma) = 1 - P(C | Ma)

• C = 1 - C is called the power of the test. 
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Sample Space S – probabilities under Ma

Reject M0

C = 1 - C

Accept M0 (Type II error if Ma true)

Critical Region C

1 - C = C
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• Designing a test involves a tradeoff between 
significance and power 

– smaller C gives smaller Type I error but larger 
Type II error (lower power).
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Likelihood Ratio Tests

• A likelihood ratio test of models Ma and M0 is a 

hypothesis test of the two models, with critical 

region C defined by

C = CL = {s | LR(Ma, M0 | s)  L}

for some non-negative constant L, the cutoff value.
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• Neyman-Pearson lemma motivates use of the 

likelihood ratio as an optimal discriminator, or 

“score” 

– even in contexts where we aren’t explicitly testing 

hypotheses.

• any monotonic function f(LR) of  likelihood ratio 

has equivalent optimality properties 

– because defines the same set of critical regions: 

LR(Ma, M0 | s)  L  f(LR(Ma, M0 | s))  f(L)

• convenient to take f to be the log function, in 

which case we get the log likelihood ratio.
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Neyman-Pearson lemma

Let Ma and M0 be two models, and CL the critical region 
defined by a likelihood ratio test of Ma vs. M0 with 

– cutoff value L, 

– significance level L, and 

– power L = 1 - L. 

Then if C is any other critical region, we have

– If C < L , then C < L (and C > L )

– If C = L , then C  L  (and C  L ) 

In other words, the likelihood ratio test with significance 
level L is the most powerful test 

– (has the lowest type II error rate) 

with that significance level.
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CΛ C

xa ya za
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xa   Λx0
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M0  probabilities

Ma probabilities

C < Λ

 z0 < x0

 Λ z0 < Λ x0

 za < xa

 C < Λ

Idea of Neyman-Pearson lemma proof:
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▪ Proof: Suppose C < L .Then 

Subtract from both sides the terms involving 

s  C  CL This leaves 

(1)

) |()|( 00 MsPMsP
Cs Cs

 
  L



) |()|( 0

\ \

0 MsPMsP
CCs CCs

 
L L 





16

• By definition of the likelihood ratio test, for 

any observation s,

• From this, it follows that

(2)

and

(3)
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• Combining (2), (1), and (3)

so (cancelling the common factor 1 / L)

so, adding in the terms corresponding to s  C  CL

i.e C < L The other part of the lemma (C  L

if C = L) is proved similarly.
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Weight Matrices for Site Models

• LR for sites: (prob under site model) / (prob 
under non-site (background) model)

• LLR = 

– compute by reading from a matrix whose i-th column 
contains values 
for each residue r (with r labelling the rows).  

• We use log2.
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Example: 3’ splice sites in C. elegans

• For background distribution take 

– genomic residue freqs computed from C. elegans

chrom. I:

A  4,575,132:    0.321

C  2,559,048:    0.179

G  2,555,862:    0.179

T  4,582,688:    0.321

– other choices are possible, e.g. composition of 

transcribed regions 

• For the site distribution we take 

– site residue freqs from 8192 sites:
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Weight Matrix – 3’ Splice Sites

SITE FREQUENCIES: 
A  0.400  0.429  0.282  0.058  0.008  0.092  0.029  1.000  0.000  0.410  0.293  0.307  

C  0.118  0.079  0.081  0.029  0.016  0.135  0.834  0.000  0.000  0.156  0.187  0.225  

G  0.072  0.070  0.063  0.018  0.005  0.073  0.001  0.000  1.000  0.310  0.159  0.191  

T  0.409  0.422  0.574  0.896  0.971  0.700  0.135  0.000  0.000  0.124  0.361  0.276  

 

BACKGROUND FREQUENCIES: 
A  0.321  0.321  0.321  0.321  0.321  0.321  0.321  0.321  0.321  0.321  0.321  0.321  

C  0.179  0.179  0.179  0.179  0.179  0.179  0.179  0.179  0.179  0.179  0.179  0.179  

G  0.179  0.179  0.179  0.179  0.179  0.179  0.179  0.179  0.179  0.179  0.179  0.179  

T  0.321  0.321  0.321  0.321  0.321  0.321  0.321  0.321  0.321  0.321  0.321  0.321  

 

 

 

WEIGHTS: 
A   0.32   0.42  -0.18  -2.46  -5.29  -1.79  -3.45   1.64 -99.00   0.36  -0.13  -0.06  

C  -0.60  -1.18  -1.15  -2.64  -3.51  -0.41   2.22 -99.00 -99.00  -0.20   0.06   0.33  

G  -1.31  -1.35  -1.51  -3.35  -5.23  -1.30  -6.93 -99.00   2.48   0.79  -0.17   0.10  

T   0.35   0.39   0.84   1.48   1.60   1.12  -1.24 -99.00 -99.00  -1.37   0.17  -0.22  
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Scoring a Candidate 3’ Splice Site

 

A   0.32   0.42  -0.18  -2.46  -5.29  -1.79  -3.45   1.64 -99.00   0.36  -0.13  -0.06  

C  -0.60  -1.18  -1.15  -2.64  -3.51  -0.41   2.22 -99.00 -99.00  -0.20   0.06   0.33  

G  -1.31  -1.35  -1.51  -3.35  -5.23  -1.30  -6.93 -99.00   2.48   0.79  -0.17   0.10  

T   0.35   0.39   0.84   1.48   1.60   1.12  -1.24 -99.00 -99.00  -1.37   0.17  -0.22  

 

 

      T      T      C      T      T      A      C      A      G      A      A      T 

 

    0.35 + 0.39 +-1.15 + 1.48 + 1.60 +-1.79 + 2.22 + 1.64 + 2.48 + 0.36 +-0.13 +-0.22  = 7.23 
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• General def.: a weight matrix W  has

entries wrj indexed by residues r  A, and 1  j  n

• score of a sequence s = (s1 s2 ... sn ) is 

• In the site case, 
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Score Distributions (AG sites)–

3’ SS Weight Matrix
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Score Distributions (AG sites)–

3’ SS Weight Matrix
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Some Issues for Site Weight Matrices 

(to be discussed later)

• Can derive theoretical probability distribution for 

scores, and compare with above empirical 

distributions

• Small sample correction to frequencies: 

pseudocounts

• Avoiding overfitting (e.g. using too large a window)


