
Lecture 6

• Algorithmic complexity

• Directed graphs, DAGs

• DAG structure

• Dynamic programming to find highest 

weight paths in WDAGs

1



2

Algorithmic Complexity

• Basic questions about an algorithm:

– how long does it take to run?

– how much space (RAM or disk space) does it require?

• Would like precise function f(N), e.g.  

f(N) = .05 N3 + 50.7 N2 + 6.03 N 

for 

– running time in secs, or 

– space in kbytes, 

as function of the size N of input data set.  

• But 

– tedious to derive & 

– depends on (often uninteresting – though important!) hardware & 
software implementation details.



3

• Instead, more customary to give “the” asymptotic 

complexity, i.e. expression g(N) such that 

C1g(N)  < f(N) < C2g(N) 

for some constants C1 and C2 , and N large enough.  

• This is written O(g(N)), where notation O() means 

“up to an unspecified multiplicative constant”. 

– e.g. for the f(N) above, the dominating term for large N is 

.05 N3, so 

• can take g(N) = N3

• asymptotic complexity = O(N3). 



4

• Can be misleading, since 

– for small N a different term may dominate 

• (e.g. 2d term in above example much more important for N < 

1000)

– size of constant may be quite important 

• (big difference between .05 and 5,000,000!) 

• e.g. BLAST and Smith-Waterman both O(N2), but size of 

constant enormously different

• but very useful as rough guide to performance.



5

• Cache misses (non-cache memory accesses) and 
disk accesses often dominate running time, yet 
are ‘invisible’ to complexity analysis (because 
affect constant factor only)



6

• Another limitation to complexity analysis:

– time or space requirement may depend on specific 
characteristics of input data. 

• Usually give “worst case” complexity 

– applies to the worst data set of a given size, 

but

– in biological situations the average biologically 
occurring case is 

• more relevant

• often much easier than worst case (which may never arise in 
practice), or even “average case” in some idealized sense.



7

• Proof that a problem is NP-hard

– (has complexity very likely greater than any polynomial 
function of N and therefore effectively unsolvable for 
large N) 

can be useful in guiding search for more efficient 
algorithms 

but can also be misleading, since 

– we need some solution anyway, for data sets occurring in 
practice

– average biologically relevant case may be quite 
manageable



8

Directed Graphs

• A directed graph is a pair (V, E) where 

– V is a finite set of vertices, or nodes. 

– E is a set of ordered pairs (called edges) of vertices in 

V. 

• An edge (vi, vj ) is said to leave vi and to enter vj. 

– (vi and vj are vertices) 

• in-degree of a vertex = # edges entering it; 

• out-degree = # edges leaving it.



9

Example: 

• V = {1,2,3,4,5,6}, 

• E = {(1,2), (1,3), (2,4), (4,1), (5,3), (3,1)}

• Vertex 3 has in-degree 2 and out-degree 1.

1

2
4

3

5
6



10

Paths and Cycles
• A path of length k in G from u to u’ (vertices) is 

– a sequence P of vertices (v0, v1, . . . , vk) such that 

• v0 = u, 

• vk = u’, and 

• (vi-1, vi ) is an edge for i = 1,2, . . ., k. 

• A path can have length 0. 

• We write |P| = k. 

• A cycle is a path of length  1 from a vertex to itself.

• In example at right, 

– (1,2,4) is a path, 

– (1,3,5) is not, and 

– (1,2,4,1) and (1,3,1) are cycles.

1

2
4

3

5
6



11

• Can join

– any path (u, ... , v) from u to v, to 

– any path (v, ... , w) from v to w

to get a path (u, ... , v, ... , w) from u to w.



12

DAGs 

• A directed acyclic graph (DAG) is a directed graph with 
no cycles.

• In a DAG, for distinct nodes vi and vj, we say
– vi is a parent of vj, and vj is a child of vi, if 

• there is an edge (vi, vj )

– vi is an ancestor of vj, and vj is a descendant of vi, if 
• there is a path from vi to vj

• In a DAG the length of a path cannot exceed |V| - 1, 
– (where |V| = total # vertices in graph)

because 
– in a path of length  |V|,

• at least one vertex v would have to appear twice in the path; 

– but then there would be a path from v to v, i.e. a cycle.



13

Structure of DAGs 

• Define the depth of a node v in V as: 

– the length of the longest path ending at v; 

by above, the depth is well-defined and  |V| - 1.

• Every descendant w of a node v has higher depth 

than v:  If 

– (u, ... ,v) is path of length n = depth(v) ending at v, 

and 

– (v, ..., w) is path from v to w, 

then (u, ..., v, ..., w) is a path of length > n ending 

at w, so depth(w) > n.



14

• Every node v of positive depth has a parent of depth 

exactly one less: 

– Let (u, ... , v’, v) be path of length n = depth(v) ending at v. 

– Then v’ is a parent of v. 

– Since (u, ... , v’) has length n – 1, depth(v’)  n – 1.

– Since also depth(v’) < n (because v is a descendant of v’), 

depth(v’) is exactly n – 1.

• The nodes on any path are of increasing depth.



15

Depth 0

Depth 1

Depth 2

Depth 3

v0

v2 v3

v7

v1

v5

v8

v4

v6

v9

v10

.

.

.



16

Important special cases:

• A (rooted) tree is a DAG which 

– has unique depth 0 node (the root), and

– every other node has in-degree 1 

• (i.e. has a unique parent, of depth one less than that of the node). 

• A binary tree is a tree in which 

– every node has out-degree at most 2.

• A linked list is a tree in which 

– every node has out-degree at most 1 

– or equivalently, a DAG in which  at most one node of each 

depth



17

v0

v4v3

v2v1

v5

v7
v6 v8

binary tree

v0

linked list

v1

v2

v3

v4



18

Remarks on Depth Structure

• For dynamic programming algorithm  

– we need an order v1, v2, ..., vn for the vertices 

• (not a path!) 

in which parents appear before children. 

– From the above, depth order

• (in which depth 0 nodes are listed first, then depth 1 nodes, etc.) 

is such an order. 

– In general there are many other such orders.

• We haven’t given constructive procedure for finding 
the depths of all vertices. 

– For an arbitrary DAG, can be done in O(|V| + |E|) time; 

– we omit algorithm, since for DAGs related to sequence 
analysis, the depth structure is obvious.



19

Weighted Directed Graphs
• A weighted directed graph is 

– a directed graph (V, E) together with 

– a function w from E to the real numbers, 

• i.e. with a numerical weight w(e) (which may be positive, negative, or 0) 
associated to each edge e. 

A weighted DAG is called a WDAG.

• The (sum) weight of a path is defined to be the sum of the weights 
on the edges of the path. 

• Similarly, the product weight of a path is the product of the edge 
weights 

– usually only consider this when all weights are non-negative. 

• weight of a path P is written w(P)

• For a path of length 0 (i.e. consisting of a single vertex):

– the sum weight is 0

– the product weight is 1



20

Highest Weight Paths on 

WDAGs

• Problem: find a path with the highest possible 

weight.

• Solution: 

– “Brute force” approach 

• i.e. simply enumerating all possible paths and comparing their 

weights 

is usually impractical (too many paths!) 

– Instead, use the method of dynamic programming (‘The 

Fundamental Algorithm of Computational Biology’). 



21

• Let Pn = (v0, v1, . . . , vn) be a path of highest weight. 

• Then for each k < n, the sub-path Pk = (v0, v1, . . . , vk) 
must have highest weight of all paths ending at vk, 
because 

– if Q =  (u0, u1, . . . , vk) were another path ending at vk and 
having higher weight than Pk, 

– then the path (Q , vk+1 , ..., vn) would have weight 

w((Q, vk+1 , ..., vn)) = w(Q) + w((vk , ..., vn)) 

> w(Pk ) + w((vk , ..., vn))  =  w(Pn), 

contradicting assumption that Pn has highest weight.



22

Subpaths of a highest-weight path 

can’t be improved: 

v0

v1

v2

v3

v4

v5

u1

u0



23

• So generalize the problem as follows: 

• find, for each vertex v, the highest weight of all paths 
ending at v – call this w(v) 

• Can find w(v) in single pass through V, as follows:
– process the v in depth order (or any order in which parents 

precede children)

– if v has no parents, w(v) = 0 (the only path ending at v is (v)).

– for any other v, except for the path (v) (which has weight 0), any 
path ending at v is of form (v0, v1, . . ., vk , u , v). Then 

– u is a parent of v, so w(u) has already been computed, and 
w((v0, v1, . . . , vk , u , v))  w(u) + w((u,v)) 

with equality for an appropriate choice of vi. 

– Therefore we may compute w(v) as

))))(()((maxmax(0,  )(
) (  

u,vwuwvw
vparentsu

+=




24

Example 

Depth 0

Depth 1

Depth 2

Depth 3

v0

v2 v3

v7

v1

v5

v8

v4

v6

v9

v13
2 1 -1

3

-3

1

5

2
-2

-30

Depth 4 v10 v11 v12

2
-6 3 2



25

w(v) – depth 0 nodes

Depth 0

Depth 1

Depth 2

Depth 3

v0

v2 v3

v7

v1

v5

v8

v4

v6

v9

v13
2 1 -1

3

-3

1

5

2
-2

-30

Depth 4 v10 v11 v12

2

0 0 0

-6 3 2



26

w(v) – depth 1 nodes

Depth 0

Depth 1

Depth 2

Depth 3

v0

v2 v3

v7

v1

v5

v8

v4

v6

v9

v13
2 1 -1

3

-3

1

5

2
-2

-30

Depth 4 v10 v11 v12

2

0 0 0

2 1 0

-6 3 2



27

w(v) – depth 2 nodes

Depth 0

Depth 1

Depth 2

Depth 3

v0

v2 v3

v7

v1

v5

v8

v4

v6

v9

v13
2 1 -1

3

-3

1

5

2
-2

-30

Depth 4 v10 v11 v12

2

0 0 0

2 1 0

3
5

-6 3 2



28

w(v) – depth 3 nodes

Depth 0

Depth 1

Depth 2

Depth 3

v0

v2 v3

v7

v1

v5

v8

v4

v6

v9

v13
2 1 -1

3

-3

1

5

2
-2

-30

Depth 4 v10 v11 v12

2

0 0 0

2 1 0

3
5

4
3 2

-6 3 2



29

w(v) – depth 4 nodes

Depth 0

Depth 1

Depth 2

Depth 3

v0

v2 v3

v7

v1

v5

v8

v4

v6

v9

v13
2 1 -1

3

-3

1

5

2
-2

-30

Depth 4 v10 v11 v12

223-6

0 0 0

2 1 0

3
5

4
3 2

0 6 5



30

• To reconstruct best path, need “traceback” pointer to 
immediate predecessor of v in best path:

– in preceding graph, T(v) is the parent on red edge coming 
into v

• if more than one such edge, pick one at random; 

• if no such edge, T(v) = v

• Sometimes useful to record beginning of best path:








+

=
=



0)(     ))(()(( max arg

0)(                                             
)(

 )parents(  

vwu,v w uw

vwv
vT

vu







=
=

0)(                                   ))((

0)(                                             
)(

vwvTB

vwv
vB



31

• Then highest weight of any path in graph is

maxv V (w(v))

– updated as each node is visited 

• indicated by        in preceding graph –

and so doesn’t require additional pass through vertices 

• if u = argmaxv  V (w(v)), can reconstruct highest weight 
path by tracing back from u, using T: 

– path ends at u; 

– immediate predecessor of u is T(u); 

– predecessor of  T(u) is T(T(u)); etc.

– stop when T(v) = v.

• In preceding example, highest weight is 6 and u = v11



32

Dynamic programming on WDAGs

Depth 0

Depth 1

Depth 2

Depth 3

v0

v2 v3

v7

v1

v5

v8

v4

v6

v9

v13
2 1 -1

3

-3

1

5

2
-2

-30

Depth 4 v10 v11 v12

223-6

0 0 0

2 1 0

3
5

4
3 2

0 6 5



33

Complexity of Dynamic Programming

• Time to find a best path is O(|E|+|V|): 

– in initial pass, visit each node, and each edge into that 

node: O(|E|+|V|)

– in traceback, visit subset of nodes, and unique edge 

from each node: O(|V|)

(Complexity to find all highest weight paths can be 

higher)

For very large graphs, even O(|E|+|V|) may be 

unacceptable!



34

• Space requirements: 

– If only want weight of best path, and beginning and end, 

then 

– don’t need T(v), and 

– only need retain w(v) and B(v) until have processed all children 

of v (or when best path found so far ends at v). 

Space depends on graph structure, but usually << O(|V|). 

– If want path itself, must store T(v)  v

– space = O(|V|) 

–  algorithms (for some graphs) to reduce this, but may take 

more time.



35

Implementing Dynamic Programming 

in a Computer Program

• Storing entire graph has space complexity = 

O(|V|+|E|)

• If graph has regular structure, can often “create” and 

process vertices and edges on the fly, without 

storing in memory

– cf. edit graph (to be defined later) for aligning sequences



36

Same dynamic programming approach 

can be used to find:

1. Highest product weight path (if weights are  0)

2. Highest weight path that 

– starts in particular subset V’ of vertices, 

• don’t consider paths that start outside V’ : 

i.e. when computing w(v), don’t consider trivial path unless v V’

– and/or ends in particular subset V’’

• only scan for the maximum w(v) over V’’ 

3. Sum of product weights of all paths ending at 
particular vertex

– sum over all edges coming into v, instead of maximizing

– this useful for probability calculations

• Will use the above variants later!


