
Lecture 6

• Algorithmic complexity

• Directed graphs, DAGs

• DAG structure

• Dynamic programming to find highest

weight paths in WDAGs

1

2

Algorithmic Complexity

• Basic questions about an algorithm:

– how long does it take to run?

– how much space (RAM or disk space) does it require?

• Would like precise function f(N), e.g.

f(N) = .05 N3 + 50.7 N2 + 6.03 N

for

– running time in secs, or

– space in kbytes,

as function of the size N of input data set.

• But

– tedious to derive &

– depends on (often uninteresting – though important!) hardware &
software implementation details.

3

• Instead, more customary to give “the” asymptotic

complexity, i.e. expression g(N) such that

C1g(N) < f(N) < C2g(N)

for some constants C1 and C2 , and N large enough.

• This is written O(g(N)), where notation O() means

“up to an unspecified multiplicative constant”.

– e.g. for the f(N) above, the dominating term for large N is

.05 N3, so

• can take g(N) = N3

• asymptotic complexity = O(N3).

4

• Can be misleading, since

– for small N a different term may dominate

• (e.g. 2d term in above example much more important for N <

1000)

– size of constant may be quite important

• (big difference between .05 and 5,000,000!)

• e.g. BLAST and Smith-Waterman both O(N2), but size of

constant enormously different

• but very useful as rough guide to performance.

5

• Cache misses (non-cache memory accesses) and
disk accesses often dominate running time, yet
are ‘invisible’ to complexity analysis (because
affect constant factor only)

6

• Another limitation to complexity analysis:

– time or space requirement may depend on specific
characteristics of input data.

• Usually give “worst case” complexity

– applies to the worst data set of a given size,

but

– in biological situations the average biologically
occurring case is

• more relevant

• often much easier than worst case (which may never arise in
practice), or even “average case” in some idealized sense.

7

• Proof that a problem is NP-hard

– (has complexity very likely greater than any polynomial
function of N and therefore effectively unsolvable for
large N)

can be useful in guiding search for more efficient
algorithms

but can also be misleading, since

– we need some solution anyway, for data sets occurring in
practice

– average biologically relevant case may be quite
manageable

8

Directed Graphs

• A directed graph is a pair (V, E) where

– V is a finite set of vertices, or nodes.

– E is a set of ordered pairs (called edges) of vertices in

V.

• An edge (vi, vj) is said to leave vi and to enter vj.

– (vi and vj are vertices)

• in-degree of a vertex = # edges entering it;

• out-degree = # edges leaving it.

9

Example:

• V = {1,2,3,4,5,6},

• E = {(1,2), (1,3), (2,4), (4,1), (5,3), (3,1)}

• Vertex 3 has in-degree 2 and out-degree 1.

1

2
4

3

5
6

10

Paths and Cycles
• A path of length k in G from u to u’ (vertices) is

– a sequence P of vertices (v0, v1, . . . , vk) such that

• v0 = u,

• vk = u’, and

• (vi-1, vi) is an edge for i = 1,2, . . ., k.

• A path can have length 0.

• We write |P| = k.

• A cycle is a path of length 1 from a vertex to itself.

• In example at right,

– (1,2,4) is a path,

– (1,3,5) is not, and

– (1,2,4,1) and (1,3,1) are cycles.

1

2
4

3

5
6

11

• Can join

– any path (u, ... , v) from u to v, to

– any path (v, ... , w) from v to w

to get a path (u, ... , v, ... , w) from u to w.

12

DAGs

• A directed acyclic graph (DAG) is a directed graph with
no cycles.

• In a DAG, for distinct nodes vi and vj, we say
– vi is a parent of vj, and vj is a child of vi, if

• there is an edge (vi, vj)

– vi is an ancestor of vj, and vj is a descendant of vi, if
• there is a path from vi to vj

• In a DAG the length of a path cannot exceed |V| - 1,
– (where |V| = total # vertices in graph)

because
– in a path of length |V|,

• at least one vertex v would have to appear twice in the path;

– but then there would be a path from v to v, i.e. a cycle.

13

Structure of DAGs

• Define the depth of a node v in V as:

– the length of the longest path ending at v;

by above, the depth is well-defined and |V| - 1.

• Every descendant w of a node v has higher depth

than v: If

– (u, ... ,v) is path of length n = depth(v) ending at v,

and

– (v, ..., w) is path from v to w,

then (u, ..., v, ..., w) is a path of length > n ending

at w, so depth(w) > n.

14

• Every node v of positive depth has a parent of depth

exactly one less:

– Let (u, ... , v’, v) be path of length n = depth(v) ending at v.

– Then v’ is a parent of v.

– Since (u, ... , v’) has length n – 1, depth(v’) n – 1.

– Since also depth(v’) < n (because v is a descendant of v’),

depth(v’) is exactly n – 1.

• The nodes on any path are of increasing depth.

15

Depth 0

Depth 1

Depth 2

Depth 3

v0

v2 v3

v7

v1

v5

v8

v4

v6

v9

v10

.

.

.

16

Important special cases:

• A (rooted) tree is a DAG which

– has unique depth 0 node (the root), and

– every other node has in-degree 1

• (i.e. has a unique parent, of depth one less than that of the node).

• A binary tree is a tree in which

– every node has out-degree at most 2.

• A linked list is a tree in which

– every node has out-degree at most 1

– or equivalently, a DAG in which at most one node of each

depth

17

v0

v4v3

v2v1

v5

v7
v6 v8

binary tree

v0

linked list

v1

v2

v3

v4

18

Remarks on Depth Structure

• For dynamic programming algorithm

– we need an order v1, v2, ..., vn for the vertices

• (not a path!)

in which parents appear before children.

– From the above, depth order

• (in which depth 0 nodes are listed first, then depth 1 nodes, etc.)

is such an order.

– In general there are many other such orders.

• We haven’t given constructive procedure for finding
the depths of all vertices.

– For an arbitrary DAG, can be done in O(|V| + |E|) time;

– we omit algorithm, since for DAGs related to sequence
analysis, the depth structure is obvious.

19

Weighted Directed Graphs
• A weighted directed graph is

– a directed graph (V, E) together with

– a function w from E to the real numbers,

• i.e. with a numerical weight w(e) (which may be positive, negative, or 0)
associated to each edge e.

A weighted DAG is called a WDAG.

• The (sum) weight of a path is defined to be the sum of the weights
on the edges of the path.

• Similarly, the product weight of a path is the product of the edge
weights

– usually only consider this when all weights are non-negative.

• weight of a path P is written w(P)

• For a path of length 0 (i.e. consisting of a single vertex):

– the sum weight is 0

– the product weight is 1

20

Highest Weight Paths on

WDAGs

• Problem: find a path with the highest possible

weight.

• Solution:

– “Brute force” approach

• i.e. simply enumerating all possible paths and comparing their

weights

is usually impractical (too many paths!)

– Instead, use the method of dynamic programming (‘The

Fundamental Algorithm of Computational Biology’).

21

• Let Pn = (v0, v1, . . . , vn) be a path of highest weight.

• Then for each k < n, the sub-path Pk = (v0, v1, . . . , vk)
must have highest weight of all paths ending at vk,
because

– if Q = (u0, u1, . . . , vk) were another path ending at vk and
having higher weight than Pk,

– then the path (Q , vk+1 , ..., vn) would have weight

w((Q, vk+1 , ..., vn)) = w(Q) + w((vk , ..., vn))

> w(Pk) + w((vk , ..., vn)) = w(Pn),

contradicting assumption that Pn has highest weight.

22

Subpaths of a highest-weight path

can’t be improved:

v0

v1

v2

v3

v4

v5

u1

u0

23

• So generalize the problem as follows:

• find, for each vertex v, the highest weight of all paths
ending at v – call this w(v)

• Can find w(v) in single pass through V, as follows:
– process the v in depth order (or any order in which parents

precede children)

– if v has no parents, w(v) = 0 (the only path ending at v is (v)).

– for any other v, except for the path (v) (which has weight 0), any
path ending at v is of form (v0, v1, . . ., vk , u , v). Then

– u is a parent of v, so w(u) has already been computed, and
w((v0, v1, . . . , vk , u , v)) w(u) + w((u,v))

with equality for an appropriate choice of vi.

– Therefore we may compute w(v) as

))))(()((maxmax(0,)(
) (

u,vwuwvw
vparentsu

+=

24

Example

Depth 0

Depth 1

Depth 2

Depth 3

v0

v2 v3

v7

v1

v5

v8

v4

v6

v9

v13
2 1 -1

3

-3

1

5

2
-2

-30

Depth 4 v10 v11 v12

2
-6 3 2

25

w(v) – depth 0 nodes

Depth 0

Depth 1

Depth 2

Depth 3

v0

v2 v3

v7

v1

v5

v8

v4

v6

v9

v13
2 1 -1

3

-3

1

5

2
-2

-30

Depth 4 v10 v11 v12

2

0 0 0

-6 3 2

26

w(v) – depth 1 nodes

Depth 0

Depth 1

Depth 2

Depth 3

v0

v2 v3

v7

v1

v5

v8

v4

v6

v9

v13
2 1 -1

3

-3

1

5

2
-2

-30

Depth 4 v10 v11 v12

2

0 0 0

2 1 0

-6 3 2

27

w(v) – depth 2 nodes

Depth 0

Depth 1

Depth 2

Depth 3

v0

v2 v3

v7

v1

v5

v8

v4

v6

v9

v13
2 1 -1

3

-3

1

5

2
-2

-30

Depth 4 v10 v11 v12

2

0 0 0

2 1 0

3
5

-6 3 2

28

w(v) – depth 3 nodes

Depth 0

Depth 1

Depth 2

Depth 3

v0

v2 v3

v7

v1

v5

v8

v4

v6

v9

v13
2 1 -1

3

-3

1

5

2
-2

-30

Depth 4 v10 v11 v12

2

0 0 0

2 1 0

3
5

4
3 2

-6 3 2

29

w(v) – depth 4 nodes

Depth 0

Depth 1

Depth 2

Depth 3

v0

v2 v3

v7

v1

v5

v8

v4

v6

v9

v13
2 1 -1

3

-3

1

5

2
-2

-30

Depth 4 v10 v11 v12

223-6

0 0 0

2 1 0

3
5

4
3 2

0 6 5

30

• To reconstruct best path, need “traceback” pointer to
immediate predecessor of v in best path:

– in preceding graph, T(v) is the parent on red edge coming
into v

• if more than one such edge, pick one at random;

• if no such edge, T(v) = v

• Sometimes useful to record beginning of best path:

+

=
=

0)())(()((max arg

0)(
)(

)parents(

vwu,v w uw

vwv
vT

vu

=
=

0)())((

0)(
)(

vwvTB

vwv
vB

31

• Then highest weight of any path in graph is

maxv V (w(v))

– updated as each node is visited

• indicated by in preceding graph –

and so doesn’t require additional pass through vertices

• if u = argmaxv V (w(v)), can reconstruct highest weight
path by tracing back from u, using T:

– path ends at u;

– immediate predecessor of u is T(u);

– predecessor of T(u) is T(T(u)); etc.

– stop when T(v) = v.

• In preceding example, highest weight is 6 and u = v11

32

Dynamic programming on WDAGs

Depth 0

Depth 1

Depth 2

Depth 3

v0

v2 v3

v7

v1

v5

v8

v4

v6

v9

v13
2 1 -1

3

-3

1

5

2
-2

-30

Depth 4 v10 v11 v12

223-6

0 0 0

2 1 0

3
5

4
3 2

0 6 5

33

Complexity of Dynamic Programming

• Time to find a best path is O(|E|+|V|):

– in initial pass, visit each node, and each edge into that

node: O(|E|+|V|)

– in traceback, visit subset of nodes, and unique edge

from each node: O(|V|)

(Complexity to find all highest weight paths can be

higher)

For very large graphs, even O(|E|+|V|) may be

unacceptable!

34

• Space requirements:

– If only want weight of best path, and beginning and end,

then

– don’t need T(v), and

– only need retain w(v) and B(v) until have processed all children

of v (or when best path found so far ends at v).

Space depends on graph structure, but usually << O(|V|).

– If want path itself, must store T(v) v

– space = O(|V|)

– algorithms (for some graphs) to reduce this, but may take

more time.

35

Implementing Dynamic Programming

in a Computer Program

• Storing entire graph has space complexity =

O(|V|+|E|)

• If graph has regular structure, can often “create” and

process vertices and edges on the fly, without

storing in memory

– cf. edit graph (to be defined later) for aligning sequences

36

Same dynamic programming approach

can be used to find:

1. Highest product weight path (if weights are 0)

2. Highest weight path that

– starts in particular subset V’ of vertices,

• don’t consider paths that start outside V’ :

i.e. when computing w(v), don’t consider trivial path unless v V’

– and/or ends in particular subset V’’

• only scan for the maximum w(v) over V’’

3. Sum of product weights of all paths ending at
particular vertex

– sum over all edges coming into v, instead of maximizing

– this useful for probability calculations

• Will use the above variants later!

