
Lecture 7:

Weighted linked lists

• Applications (via sequence graphs):  

– regions of atypical residue composition

– motif clusters

– read count data

• Finding multiple high-scoring paths

• “D-segments”

• Statistical significance

1



2

Weighted Linked Lists (WLLs)

• WLL is linked list with weights on each edge 

– simplest kind of WDAG.

• Paths = ‘segments’ or ‘regions’

-2 2 -1 2 1 -1 -1 1 -2 1 -2 2

highest-scoring segment



3

• Find highest-scoring segments by dynamic 
programming

– Much better than “brute force” algorithm!

• Beginning & end of best path determine path 
uniquely, so

– traceback is unnecessary

– single pass through list suffices to find best path.



4

• To reconstruct best path, need “traceback” pointer to 
immediate predecessor of v in best path:

– in preceding graph, T(v) is the parent on red edge coming 
into v

• if more than one such edge, pick one at random; 

• if no such edge, T(v) = v

• Sometimes useful to record beginning of best path:








+

=
=



0)(     ))(()(( max arg

0)(                                             
)(

 )parents(  

vwu,v w uw

vwv
vT

vu







=
=

0)(                                   ))((

0)(                                             
)(

vwvTB

vwv
vB

from lecture 6 :



5

Applications to Sequences

• A sequence graph of a sequence is linked list 

whose edges are labelled by sequence residues 

(in order): 

• e.g. graph for sequence ACCGCTGCGAAG is:

A C C G C T G C G A A G



6

Weighted Sequence Graphs

• If attach weight to each residue, sequence graph 
becomes a WLL. 

• Useful for identifying sequence regions (‘target 
regions’) with atypical composition:

A C C G C T G C G A A G
-2 1 1 1 1 -2 1 1 -21 -2 1

Highest-scoring segment



7

• In DNA:

– GC-rich regions in AT-rich thermophile genomes 

• generally correspond to RNA genes (Rob Klein & 

Sean Eddy)

– horizontally transferred regions

– isochores (mammalian DNA)

• In proteins:
– hydrophobic regions (transmembrane segments)

– hydrophilic regions (loops, intrinsically 
disordered regions)

– acidic or basic regions



8

‘Optimal’ scores

• Assume sequence consists of 

– target regions with residue freqs tr 

– background regions with residue freqs br

– independence assumption applies in both

• Then ‘best’ scoring system to detect the target 
regions uses LLRs:          

s(r) = log(tr / br) 

• if residue freqs are unknown, can usually estimate 
iteratively



9

• Regions enriched in particular sequence motifs:

– CpG islands in mammalian genomes

• positive weight (e.g. +17) to the first C of each CpG, and 

• negative weight (e.g. –1) to every other base

(This approach was used in Nature human genome paper).

– Regions rich in (known) transcription-factor motifs

– Optimal scores are LLRs, but now based on ‘symbol 

frequencies’ (where symbol = presence/absence of motif)

Can use non-residue-based scores

to find:



• Regions targeted by next-gen read experiments 

(symbols = read counts)

– CNVs (Homework 5)

– Hypersensitive sites

– CHIP-seq

• Conserved regions in sequence alignments

(symbols = alignment columns)

10



11

CNVs & Read Depth

• CNV = ‘copy number variant’– e.g. region that is single 

copy in reference sequence but duplicated in sample

• One way to detect: map reads from sample onto 

reference, look for regions of atypical coverage depth

‘Single-copy’ in sample 

and reference
multi-copy in sample



12

HW 5:  finding CNVs 

using D-segments

• data: next-gen read alignments to genome

• observed symbols: counts of # read starts at 

each position (0, 1, 2,  3)

– frequencies from Poisson dist’n with 

appropriate mean

• target regions: heterozygous duplications 

– One chrom = reference allele, other is dup

– Poisson mean = 1.5 X background mean



Finding multiple high-scoring segments

• In general, expect several regions of particular type 

in a given sequence – not just one!

• So want to find multiple high-weight paths in a 

WDAG

• But not interested in slight perturbations of 

previously found paths

• One strategy:

– Find highest-weight path

– ‘Mask it’ (remove its edges from graph)

– Repeat above two steps until scores no longer 

‘interesting’ 13



14

• Is there a more efficient algorithm not requiring 

repeated scans? 

– Ruzzo & Tompa solved for WLLs 

–  solution for arbitrary WDAGs?



15

50 100-75

score = 75, but does not satisfy P1

maximal-scoring segments

contained in 

higher-scoring 

segment

• A (locally-)maximal(-scoring) segment I is one such 

that 

– P1: no subsegment of I has a higher score than I

– P2: no segment properly containing I satisfies P1

• Example:



16

• Problem: given S > 0, find all maximal segs of score  S

• Segments are paths in a linked-list WDAG with N+1 

vertices and N edges 

• Highest weight path is found by dynamic programming;

in (pseudo-)pseudocode:

cumul = max = 0;  start = 1;

for (i = 1; i  N; i++)  {

cumul += s[i];

if (cumul  0)

{cumul = 0;  start = i + 1;}  /* NOTE RESET TO ZERO */

else if (cumul  max) 

{max = cumul;  best_end = i;  best_start = start;}

}

if (max  S) print best_start, best_end, max



17

Maximal segments – from cumulative score plot 

(without 0 resets)

maximal segment

start (local minimum)

end (local maximum)



18

• Can find all maximal segs of score  S using 

following practical (but non-optimal) algorithm:

cumul = max = 0;  start = 1;

for (i = 1; i  N; i++) {

cumul += s[i]; 

if (cumul  max) 

{max = cumul; end = i;}

if (cumul  0 or i == N) {

if (max  S) 

{print start, end, max;   i = end; }  /* N.B. MUST BACKTRACK! */

max = cumul = 0;  start = end = i + 1;

}

}



19

1st maximal segment 2d maximal segment

‘backtracked’ region –

scanned twice



20

• In worst case this is O(N2) (because of 

backtracking), 

– but in practice usually O(N) because a given 

base is usually traversed only a few times

• Ruzzo-Tompa algorithm guarantees O(N)



21

• undesirable aspect of maximal segments as  

defined: 

– single maximal seg may contain two (or more) high-

scoring regions, separated by significant negative-

scoring regions

– i.e. two possibly biologically distinct target occurrences 

get merged into one maximal segment  



22

50 100-45

now entire segment has score = 105, & satisfies P1 and P2

• Example:



23

A better problem!

• to avoid this, have max allowed ‘dropoff’ D 

< 0 

• D-segment is segment without any 

subsegments of score < D 

• maximal D-segment is D-segment I such 

that 
• P1: no subsegment of I has higher score than I

• P2: no D-segment properly containing I satisfies P1

• Problem: given S ( –D), find all maximal 

D-segs of score  S

– (algorithm fails if S < –D)



24

Maximal D-segments

1st maximal D-segment 2d maximal D-segment

maximal segment

D:



25

• O(N) algorithm to find all maximal D-segs:

cumul = max = 0; start = 1;

for (i = 1; i  N; i++) {

cumul += s[i]; 

if (cumul  max) 

{max = cumul; end = i;}

if (cumul  0 or cumul  max + D or i == N) {

if (max  S) 

{print start, end, max; }

max = cumul = 0; start = end = i + 1; /* NO BACKTRACKING 

NEEDED! */

}

}



26

• So more biologically relevant problem is also 

computationally simpler!

• what are appropriate S and D? 

– mainly an empirical question (based on known 

examples); altho

• interpretation via 2-state HMM can be useful

• Karlin-Altschul theory tells when they are ‘statistically 

significant’



D-Segments

• Powerful tool for analyzing ‘linear’ data

– Single sequences (incl. motifs, numerical data)

– Fixed alignment

• Strengths:

– Very simple to program

– Very fast, even for mammalian genomes

• Main limitation:

– Only allows two types of segments (‘target’ and 

‘background’)

• Essentially a generalization of 2-state HMMs

• multi-state HMMs are more flexible
27



28

Statistical significance 

of segment scores 

• How often does a given score occur by chance in 
background sequence? 

• Can suggest (but not prove!) biological 
significance



29

Methods for Assessing Significance 

of Maximal Segment Scores

1. exact prob dist’n

2. approximate formula (Karlin-Altschul)

3. from simulated sequences

4. from real biological ‘background’ sequences 

– i.e. not having feature in question

1, 2, 3 require probability model approximating biological 
reality; 4 requires an appropriate dataset

2 is faster than 1 or 3 (and gives ‘intuition’), but involves add’l 
approximations (ignores ‘edge effects’) 

1 requires more complex algorithm



30

Karlin / Altschul approximation

• for s(r) = logb(tr / br), expected #  segments of 
score ≥ S in (random) backgd seq of length N 

≈  NK b-S

• for some constant K (not depending on S)

• Note that b-S = b-LLR = 1 / LR

so (apart from K) this is essentially the 
observation in lecture 5:



(from lecture 5)

Average likelihood ratios

• average LR (for sites) ≈ average spacing between 

occurrences of ‘site-like’ sequences in background 

• So e.g. for 3’ splice sites 

– if the average LR is 1000,  then one expects ‘splice-site-

like’ sequences to occur on average once per kb in 

background sequence

– N.B. This says nothing about the frequency of actual

splice sites! (which could be greater or smaller than 1 

per kb), and so doesn’t by itself provide the probability 

that an apparent splice site is an actual site.

31


